期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
空间坐标系变换的函数梯度描述方法 被引量:8
1
作者 段鹏硕 刘根友 +2 位作者 龚有亮 郝晓光 王娜子 《测绘学报》 EI CSCD 北大核心 2014年第10期1005-1012,共8页
为了将空间坐标系变换由静态的、不随时间发生变换的情况推广到动态的、随时间发生变换以及任意角度发生变换的情况,基于单位四元数构造的旋转矩阵和罗德里格矩阵的完全等价性,揭示出空间坐标系(空间直角坐标系)变换与函数梯度的数学关... 为了将空间坐标系变换由静态的、不随时间发生变换的情况推广到动态的、随时间发生变换以及任意角度发生变换的情况,基于单位四元数构造的旋转矩阵和罗德里格矩阵的完全等价性,揭示出空间坐标系(空间直角坐标系)变换与函数梯度的数学关系,推导出由函数梯度表示的空间坐标系变换的数学公式,在理论上说明了用函数梯度描述空间坐标系变换的方法。研究表明,在数学意义上,空间坐标系变换的本质是"场",可以用"场"的概念统一以任意角度发生旋转变换的空间坐标系变换特例,为进一步研究空间坐标系随时间发生连续变换的情况或以新的思路为运动载体定姿奠定了理论基础。 展开更多
关键词 空间坐标系变换 函数梯度场 完全等价性
原文传递
The seamless model for three-dimensional datum transformation 被引量:19
2
作者 LI BoFeng SHEN YunZhong LI WeiXiao 《Science China Earth Sciences》 SCIE EI CAS 2012年第12期2099-2108,共10页
With extensive applications of space geodesy, three-dimensional datum transformation model has been necessarily used to transform the coordinates in the different coordinate systems.Its essence is to predict the coord... With extensive applications of space geodesy, three-dimensional datum transformation model has been necessarily used to transform the coordinates in the different coordinate systems.Its essence is to predict the coordinates of non-common points in the second coordinate system based on their coordinates in the first coordinate system and the coordinates of common points in two coordinate systems.Traditionally, the computation of seven transformation parameters and the transformation of noncommon points are individually implemented, in which the errors of coordinates are taken into account only in the second system although the coordinates in both two systems are inevitably contaminated by the random errors.Moreover, the coordinate errors of non-common points are disregarded when they are transformed using the solved transformation parameters.Here we propose the seamless (rigorous) datum transformation model to compute the transformation parameters and transform the non-common points integratively, considering the errors of all coordinates in both coordinate systems.As a result, a nonlinear coordinate transformation model is formulated.Based on the Gauss-Newton algorithm and the numerical characteristics of transformation parameters, two linear versions of the established nonlinear model are individually derived.Then the least-squares collocation (prediction) method is employed to trivially solve these linear models.Finally, the simulation experiment is carried out to demonstrate the performance and benefits of the presented method.The results show that the presented method can significantly improve the precision of the coordinate transformation, especially when the non-common points are strongly correlated with the common points used to compute the transformation parameters. 展开更多
关键词 coordinate transformation COLLOCATION total least squares Bursa model Gauss-Newton method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部