流形学习是为了寻找高维空间中观测数据的低维嵌入.作为一种有效的非线性维数约减方法,流形学习被广泛应用于数据挖掘、模式识别等机器学习领域.然而,对于样本外点学习、增量学习和在线学习等流形学习方法,面对流式大数据的学习算法时...流形学习是为了寻找高维空间中观测数据的低维嵌入.作为一种有效的非线性维数约减方法,流形学习被广泛应用于数据挖掘、模式识别等机器学习领域.然而,对于样本外点学习、增量学习和在线学习等流形学习方法,面对流式大数据的学习算法时间效率较低.为此提出了一种新的基于增量切空间的自适应流式大数据学习算法(self-adaptive streaming big data learning algorithm based on incremental tangent space alignment,SLITSA),该算法采用增量PCA的思想,增量地构造子空间,能在线或增量地检测数据流中的内在低维流形结构,在迭代过程中构建新的切空间进行调准,保证了算法的收敛性并降低了重构误差.通过人工数据集以及真实数据集上的实验表明:该算法分类精度和时间效率优于其他学习算法,可推广到在线或流式大数据的应用当中.展开更多
文摘流形学习是为了寻找高维空间中观测数据的低维嵌入.作为一种有效的非线性维数约减方法,流形学习被广泛应用于数据挖掘、模式识别等机器学习领域.然而,对于样本外点学习、增量学习和在线学习等流形学习方法,面对流式大数据的学习算法时间效率较低.为此提出了一种新的基于增量切空间的自适应流式大数据学习算法(self-adaptive streaming big data learning algorithm based on incremental tangent space alignment,SLITSA),该算法采用增量PCA的思想,增量地构造子空间,能在线或增量地检测数据流中的内在低维流形结构,在迭代过程中构建新的切空间进行调准,保证了算法的收敛性并降低了重构误差.通过人工数据集以及真实数据集上的实验表明:该算法分类精度和时间效率优于其他学习算法,可推广到在线或流式大数据的应用当中.