交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensatio...交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensation,MCEC).针对传统预测模型不能兼顾时间序列和协变量的问题,提出基于小波分析的特征拓展方法,该方法引入聚类算法得到节假日标签特征,将拥堵指数、交通事故图、天气信息作为拓展特征,对特征进行多尺度分解.在训练阶段,为达到充分学习各部分数据、最优匹配模型的效果,采用差分整合移动平均自回归模型(Autoreg Ressive Integrated Moving Average Model,ARIMA)、长短期记忆神经网络(Long Short-Term Memory network,LSTM)、限制动态时间规整技术(Dynamic Time Warping,DTW)以及自注意力机制(Self-Attention),设计了多模态协同模型训练.在误差补偿阶段,将得到的相应过程值输入基于支持向量机回归(Support Vector Regression,SVR)的误差补偿模块,对各分量的误差进行学习、补偿,并重构得到预测结果.使用公开的高速公路数据集对MCEC进行验证,在多个时间间隔下对比实验结果表明,MCEC在交通流量预测中的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)达到17.02%,比LSTM-SVR、ConvLSTM(Convolutional Long Short-Term Memory network)、ST-GCN(Spatial Temporal Graph Convolutional Networks)、MFFB(Multi-stream Feature Fusion Block)、Transformer等预测模型具有更高的预测精度,MCEC模型具有较好的有效性与合理性.展开更多
准确预测商品销量的走向对零售企业具有重要意义,构建自回归移动平均模型(ARMA模型,Auto-Regressive and Moving Average Model)对零售商品时序销量数据进行预测分析;传统ARMA模型无法准确描述商品销量中同时存在的非平稳非线性特征;论...准确预测商品销量的走向对零售企业具有重要意义,构建自回归移动平均模型(ARMA模型,Auto-Regressive and Moving Average Model)对零售商品时序销量数据进行预测分析;传统ARMA模型无法准确描述商品销量中同时存在的非平稳非线性特征;论文分别采用支持向量回归(SVR,Support Vector Regression)方法和极限学习机(ELM,Extreme Learning Machine)方法,对时序模型中非线性误差进行预测并进行误差补偿,提高了商品销量的预测精度;提出了遗传优化的选择性集成定阶方法,用以简化ARMA模型的复杂定阶过程,降低了对数据平稳性程度要求;论文收集了某电商平台商品销量数据,对ARMA、选择性集成ARMA、ARMASVR、ARMA-ELM四种预测模型的性能进行了对比分析,结果表明,选择性集成ARMA模型预测精度在平稳和非平稳时序数据下分别提高23.58%和41.28%;组合模型相比仅采用线性平稳时序模型的预测结果更符合实际,其中,ARMA-SVR模型在小样本、非平稳时序下预测精度比ARMA-ELM模型高出约三分之一。展开更多
文摘准确预测商品销量的走向对零售企业具有重要意义,构建自回归移动平均模型(ARMA模型,Auto-Regressive and Moving Average Model)对零售商品时序销量数据进行预测分析;传统ARMA模型无法准确描述商品销量中同时存在的非平稳非线性特征;论文分别采用支持向量回归(SVR,Support Vector Regression)方法和极限学习机(ELM,Extreme Learning Machine)方法,对时序模型中非线性误差进行预测并进行误差补偿,提高了商品销量的预测精度;提出了遗传优化的选择性集成定阶方法,用以简化ARMA模型的复杂定阶过程,降低了对数据平稳性程度要求;论文收集了某电商平台商品销量数据,对ARMA、选择性集成ARMA、ARMASVR、ARMA-ELM四种预测模型的性能进行了对比分析,结果表明,选择性集成ARMA模型预测精度在平稳和非平稳时序数据下分别提高23.58%和41.28%;组合模型相比仅采用线性平稳时序模型的预测结果更符合实际,其中,ARMA-SVR模型在小样本、非平稳时序下预测精度比ARMA-ELM模型高出约三分之一。
基金湖南省社科基金一般项目“期权期货衍生品在农业风险管理中的应用研究”(16YBA239)广西高校中青年教师基础能力提升项目“基于高频数据的股票市杨风险度量与调控的新方法研究”(2018KY0524)+3 种基金广西社科省级一般项目“互联网货币基金利率期限结构及广西东盟经济带基金产品设计”(18BTJ001)广西教学改革工程项目区级一般A类课题“信息技术与统计学专业实验课程教学深度融合路径探索与实践”(2019CA293)广西财经学院2019年度校级虚拟仿真实验教学项目“自然灾害保险损失及精算定价的虚报伤真实验”(2019XNA06)陆海经济--体化协同创新中心(allabontive lnoation Center for Inegntio of Tenestral&Marine Eomies)项目“基于大数据智能分析的沙海金融对港口经济发展的研究”(2019YB14)。