In this paper, the conservation laws of generalized Birkhoff system in event space are studied by using the method of integrating factors. Firstly, the generalized Pfaff-Birkhoff principle and the generalized Birkhoff...In this paper, the conservation laws of generalized Birkhoff system in event space are studied by using the method of integrating factors. Firstly, the generalized Pfaff-Birkhoff principle and the generalized Birkhoff equations are established, and the definition of the integrating factors for the system is given. Secondly, based on the concept of integrating factors, the conservation theorems and their inverse for the generalized Birkhoff system in the event space are presented in detail, and the relation between the conservation laws and the integrating factors of the system is obtained and the generalized Killing equations for the determination of the integrating factors are given. Finally, an example is given to illustrate the application of the results.展开更多
For the number of complete shock curves of a conservation law with one space variable,Hopf in 1950 for the Burger equation,and Oleinik in 1956 for the general,stated that it is at most countable.In 1979,the present au...For the number of complete shock curves of a conservation law with one space variable,Hopf in 1950 for the Burger equation,and Oleinik in 1956 for the general,stated that it is at most countable.In 1979,the present author published an example to show that the statement of Hopf and Oleinik is wrong.But after so long time,the wrong statement for countability still appeared in some publications,which is at least partly due to that some ones felt difficult to understand Hopf and Oleinik’s proofs being wrong.So,pointing out where they went wrong becomes very necessary.展开更多
The authors give a proof of the convergence of the solution of the parabolic approximation towards the entropic solution of the scalar conservation law div f(x, t, u) = 0 in several space dimensions. For any initial c...The authors give a proof of the convergence of the solution of the parabolic approximation towards the entropic solution of the scalar conservation law div f(x, t, u) = 0 in several space dimensions. For any initial condition uo (RN) and for alarge class of flux f, they also prove the strong converge in any space, using the notion ofentropy process solution, which is a generalization of the measure-valued solutions of Diperna.展开更多
基金supported by National Natural Science Foundation of China under Grant No. 10572021
文摘In this paper, the conservation laws of generalized Birkhoff system in event space are studied by using the method of integrating factors. Firstly, the generalized Pfaff-Birkhoff principle and the generalized Birkhoff equations are established, and the definition of the integrating factors for the system is given. Secondly, based on the concept of integrating factors, the conservation theorems and their inverse for the generalized Birkhoff system in the event space are presented in detail, and the relation between the conservation laws and the integrating factors of the system is obtained and the generalized Killing equations for the determination of the integrating factors are given. Finally, an example is given to illustrate the application of the results.
基金partially supported by National Basic Research Program of China (Grant No.2011CB302400)National Natural Science Foundation of China (Grant No. 10771206)
文摘For the number of complete shock curves of a conservation law with one space variable,Hopf in 1950 for the Burger equation,and Oleinik in 1956 for the general,stated that it is at most countable.In 1979,the present author published an example to show that the statement of Hopf and Oleinik is wrong.But after so long time,the wrong statement for countability still appeared in some publications,which is at least partly due to that some ones felt difficult to understand Hopf and Oleinik’s proofs being wrong.So,pointing out where they went wrong becomes very necessary.
文摘The authors give a proof of the convergence of the solution of the parabolic approximation towards the entropic solution of the scalar conservation law div f(x, t, u) = 0 in several space dimensions. For any initial condition uo (RN) and for alarge class of flux f, they also prove the strong converge in any space, using the notion ofentropy process solution, which is a generalization of the measure-valued solutions of Diperna.