A SOTER management system was developed by analyzing, designing, programming, testing, repeated proceeding and progressing based on the object-oriented method. The function of the attribute database management is inhe...A SOTER management system was developed by analyzing, designing, programming, testing, repeated proceeding and progressing based on the object-oriented method. The function of the attribute database management is inherited and expanded in the new system. The integrity and security of the SOTER database are enhanced. The attribute database management, the spatial database management and the model base are integrated into SOTER based on the component object model (COM), and the graphical user interface (GUI) for Windows is used to interact with clients, thus being easy to create and maintain the SOTER, and convenient to promote the quantification and automation of soil information application.展开更多
Roads constructed in fragile Siwaliks are prone to large number of instabilities. Bhalubang–Shiwapur section of Mahendra Highway lying in Western Nepal is one of them. To understand the landslide causative factor and...Roads constructed in fragile Siwaliks are prone to large number of instabilities. Bhalubang–Shiwapur section of Mahendra Highway lying in Western Nepal is one of them. To understand the landslide causative factor and to predict future occurrence of the landslides, landslide susceptibility mapping(LSM) of this region was carried out using frequency ratio(FR) and weights-of-evidence(W of E) models. These models are easy to apply and give good results. For this, landslide inventory map of the area was prepared based on the aerial photo interpretation, from previously published/unpublished reposts, and detailed field survey using GPS. About 332 landslides were identified and mapped, among which 226(70%) were randomly selected for model training and the remaining 106(30%) were used for validation purpose. A spatial database was constructed from topographic, geological, and land cover maps. The reclassified maps based on the weight values of frequency ratio and weights-of-evidence were applied to get final susceptibility maps. The resultant landslide susceptibility maps were verified andcompared with the training data, as well as with the validation data. From the analysis, it is seen that both the models were equally capable of predicting landslide susceptibility of the region(W of E model(success rate = 83.39%, prediction rate = 79.59%); FR model(success rate = 83.31%, prediction rate = 78.58%)). In addition, it was observed that the distance from highway and lithology, followed by distance from drainage, slope curvature, and slope gradient played major role in the formation of landsides. The landslide susceptibility maps thus produced can serve as basic tools for planners and engineers to carry out further development works in this landslide prone area.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 40271056) Hubei Provin- cial Natural Science Foundation of China (No. 99J123).
文摘A SOTER management system was developed by analyzing, designing, programming, testing, repeated proceeding and progressing based on the object-oriented method. The function of the attribute database management is inherited and expanded in the new system. The integrity and security of the SOTER database are enhanced. The attribute database management, the spatial database management and the model base are integrated into SOTER based on the component object model (COM), and the graphical user interface (GUI) for Windows is used to interact with clients, thus being easy to create and maintain the SOTER, and convenient to promote the quantification and automation of soil information application.
文摘Roads constructed in fragile Siwaliks are prone to large number of instabilities. Bhalubang–Shiwapur section of Mahendra Highway lying in Western Nepal is one of them. To understand the landslide causative factor and to predict future occurrence of the landslides, landslide susceptibility mapping(LSM) of this region was carried out using frequency ratio(FR) and weights-of-evidence(W of E) models. These models are easy to apply and give good results. For this, landslide inventory map of the area was prepared based on the aerial photo interpretation, from previously published/unpublished reposts, and detailed field survey using GPS. About 332 landslides were identified and mapped, among which 226(70%) were randomly selected for model training and the remaining 106(30%) were used for validation purpose. A spatial database was constructed from topographic, geological, and land cover maps. The reclassified maps based on the weight values of frequency ratio and weights-of-evidence were applied to get final susceptibility maps. The resultant landslide susceptibility maps were verified andcompared with the training data, as well as with the validation data. From the analysis, it is seen that both the models were equally capable of predicting landslide susceptibility of the region(W of E model(success rate = 83.39%, prediction rate = 79.59%); FR model(success rate = 83.31%, prediction rate = 78.58%)). In addition, it was observed that the distance from highway and lithology, followed by distance from drainage, slope curvature, and slope gradient played major role in the formation of landsides. The landslide susceptibility maps thus produced can serve as basic tools for planners and engineers to carry out further development works in this landslide prone area.