We introduce a modification of Kantorovich-type operators in polynomial weighted spaces of functions. Then we study some approximation properties of these operators. We give some inequalities for these operators by me...We introduce a modification of Kantorovich-type operators in polynomial weighted spaces of functions. Then we study some approximation properties of these operators. We give some inequalities for these operators by means of the weighted modulus continuity and also obtain a Voronovskaya-type theorem. Furthermore, in our paper show that the operators give better degree of approximation of functions belonging to weighted spaces than classical Szaisz- Kantorovich operators.展开更多
The exact explicit traveling solutions to the two completely integrable sixthorder nonlinear equations KdV6 are given by using the method of dynamical systems and Cosgrove's work.It is proved that these traveling ...The exact explicit traveling solutions to the two completely integrable sixthorder nonlinear equations KdV6 are given by using the method of dynamical systems and Cosgrove's work.It is proved that these traveling wave solutions correspond to some orbits in the 4-dimensional phase space of two 4-dimensional dynamical systems.These orbits lie in the intersection of two level sets defined by two first integrals.展开更多
文摘We introduce a modification of Kantorovich-type operators in polynomial weighted spaces of functions. Then we study some approximation properties of these operators. We give some inequalities for these operators by means of the weighted modulus continuity and also obtain a Voronovskaya-type theorem. Furthermore, in our paper show that the operators give better degree of approximation of functions belonging to weighted spaces than classical Szaisz- Kantorovich operators.
基金Project supported by the National Natural Science Foundation of China (Nos.10771196,10831003)the Innovation Project of Zhejiang Province (No.T200905)
文摘The exact explicit traveling solutions to the two completely integrable sixthorder nonlinear equations KdV6 are given by using the method of dynamical systems and Cosgrove's work.It is proved that these traveling wave solutions correspond to some orbits in the 4-dimensional phase space of two 4-dimensional dynamical systems.These orbits lie in the intersection of two level sets defined by two first integrals.