Three kinds of possible structures of legged lander including monocoqe, semi-monocoqe and space frame are compared, and the lightest space frame structure is selected as the lander's structure. Then, a new lander ...Three kinds of possible structures of legged lander including monocoqe, semi-monocoqe and space frame are compared, and the lightest space frame structure is selected as the lander's structure. Then, a new lander with four-legged truss structure is proposed. In the premise of ensuring that the main and assistant structures of landing legs are not changed, six possible lander body structures of the new lander are put forward. Taking the section size of each component of lander as design variables, and taking the total mass of the structure as the objective function, the six structures are analyzed by using the software Altair. OptiStruct and the results show that the mass of the basic structure is the lightest, and it is selected as the final design scheme of lander due to its simple structure and convenient manufacture. The optimization on the selected lander structure is conducted, and the detailed results are presented.展开更多
A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constra...A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constraint, joint-attached kinematic constraint and boundary constraint. And their geometric constraint equations and derivative matrices are formulated. The basis of the null space and M-P inverse of the geometric constraint matrix are employed to determine the solution for quasi-static deployment analysis. The influence introduced by higher terms of constraints is evaluated subsequently. The numerical tests show that the new method is efficient.展开更多
基金Sponsored by the Project on Absorption of Intellects by Institutions of Higher Education for Academic Disciplinary Innovations(Grant No. B07018)
文摘Three kinds of possible structures of legged lander including monocoqe, semi-monocoqe and space frame are compared, and the lightest space frame structure is selected as the lander's structure. Then, a new lander with four-legged truss structure is proposed. In the premise of ensuring that the main and assistant structures of landing legs are not changed, six possible lander body structures of the new lander are put forward. Taking the section size of each component of lander as design variables, and taking the total mass of the structure as the objective function, the six structures are analyzed by using the software Altair. OptiStruct and the results show that the mass of the basic structure is the lightest, and it is selected as the final design scheme of lander due to its simple structure and convenient manufacture. The optimization on the selected lander structure is conducted, and the detailed results are presented.
基金National Natural Science Foundation ofChina(No.10 10 2 0 10 )
文摘A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constraint, joint-attached kinematic constraint and boundary constraint. And their geometric constraint equations and derivative matrices are formulated. The basis of the null space and M-P inverse of the geometric constraint matrix are employed to determine the solution for quasi-static deployment analysis. The influence introduced by higher terms of constraints is evaluated subsequently. The numerical tests show that the new method is efficient.