The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as ...The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations is analyzed to shed light oi1 the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differentii equations and their corresponding exact solutions with generalized separated variables.展开更多
In this paper,we study the Cauchy problem of an integrable evolution system,i.e.,the n-dimensional generalization of third-order symmetry of the well-known Landau-Lifshitz equation.By rewriting this equation in a geom...In this paper,we study the Cauchy problem of an integrable evolution system,i.e.,the n-dimensional generalization of third-order symmetry of the well-known Landau-Lifshitz equation.By rewriting this equation in a geometric form and applying the geometric energy method with a forth-order perturbation,we show the global well-posedness of the Cauchy problem in suitable Sobolev spaces.展开更多
Fourier analysis methods and in particular techniques based on Littlewood-Paley decomposition and paraproduct have known a growing interest recently for the study of nonlinear evolutionary equations. In this survey pa...Fourier analysis methods and in particular techniques based on Littlewood-Paley decomposition and paraproduct have known a growing interest recently for the study of nonlinear evolutionary equations. In this survey paper, we explain how these methods may be implemented so as to study the compresible Navier-Stokes equations in the whole space. We shall investigate both the initial value problem in critical Besov spaces and the low Mach number asymptotics.展开更多
基金supported by the State Administration of Foreign Experts Affairs of China,National Natural Science Foundation of China (Grant Nos. 10971136,10831003,61072147,11071159)Chunhui Plan of the Ministry of Education of China,Zhejiang Innovation Project (Grant No. T200905)the Natural Science Foundation of Shanghai and the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations is analyzed to shed light oi1 the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differentii equations and their corresponding exact solutions with generalized separated variables.
基金supported by National Basic Research Program of China(Grant No.2006CB805902)
文摘In this paper,we study the Cauchy problem of an integrable evolution system,i.e.,the n-dimensional generalization of third-order symmetry of the well-known Landau-Lifshitz equation.By rewriting this equation in a geometric form and applying the geometric energy method with a forth-order perturbation,we show the global well-posedness of the Cauchy problem in suitable Sobolev spaces.
文摘Fourier analysis methods and in particular techniques based on Littlewood-Paley decomposition and paraproduct have known a growing interest recently for the study of nonlinear evolutionary equations. In this survey paper, we explain how these methods may be implemented so as to study the compresible Navier-Stokes equations in the whole space. We shall investigate both the initial value problem in critical Besov spaces and the low Mach number asymptotics.