With the popularization of the Intemet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society...With the popularization of the Intemet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society, physical space, and cyberspace, the information environment related to the current development of artificial intelligence (AI) has profoundly changed. AI faces important adjustments, and scientific foundations are confronted with new breakthroughs, as AI enters a new stage: AI 2.0. This paper briefly reviews the 60-year developmental history of AI, analyzes the external environment promoting the formation of AI 2.0 along with changes in goals, and describes both the beginning of the technology and the core idea behind AI 2.0 development. Furthermore, based on combined social demands and the information environment that exists in relation to Chinese development, suggestions on the develoDment of Al 2.0 are given.展开更多
The contamination and environmental risk assessment of the toxic elements in sediments from the middle-downstream (Zhuzhou-Changsha section) of the Xiangjiang River in Hunan Province of China were studied. The results...The contamination and environmental risk assessment of the toxic elements in sediments from the middle-downstream (Zhuzhou-Changsha section) of the Xiangjiang River in Hunan Province of China were studied. The results show that As, Cd, Pb and Zn are major contaminants in sediments, and average concentrations of these elements significantly exceed both the Control Standards for Pollutants in Sludge of China (GB4284-84) for agricultural use in acidic soils and the effect range median (ERM) values. The average concentrations of As, Cd and Pb in the river water slightly exceed the limit of Surface Water Environment Quality Standard (GB3838-2002). The concentrations of As and Cr in depth profiles extensively change, but slight changes are observed in Pb and Zn. Cd and Zn in most sediment samples can easily enter the food-chain and bring possible ecotoxicological risk to organisms living in sediments according to the risk assessment code.展开更多
Understanding the factors that drive variation in species distribution is a central theme of ecological research. Although several studies focused on alpine vegetation, few efforts have been made to identify the envir...Understanding the factors that drive variation in species distribution is a central theme of ecological research. Although several studies focused on alpine vegetation, few efforts have been made to identify the environmental factors that are responsible for the variations in species composition and richness of alpine shrublands using numerical methods. In the present study, we investigated vegetation and associated environmental variables from 45 sample plots in the middle Qilian Mountains of the northwestern China to classify different community types and to elucidate the species- environment relationships. We also estimated the relative contributions of topography and site conditions to spatial distribution patterns of the shrub communities using the variation partitioning. The results showed that four shrub community types were identified and striking differences in fioristic composition were found among them. Species composition greatly depended on elevation, slope, shrub cover, soil pH and organic carbon. The important determinants of species richness were soil bulk density and slope. No significant differences in species richness were detected among the community types. Topography and site conditions had almost equal effects on compositional variation. Nonetheless,a large amount of the variation in species composition remained unexplained.展开更多
For successful conservation and restoration of biodiversity,it is important to understand how diversity is regulated.In the ecological research community,a current topic of interest is how much of the variation in pla...For successful conservation and restoration of biodiversity,it is important to understand how diversity is regulated.In the ecological research community,a current topic of interest is how much of the variation in plant species richness and composition is explained by environmental variation(niche-based model),relative to spatial processes(neutral theory).The Yellow River Estuary(YRE) is a newly formed and fragile wetland ecosystem influenced by both the Yellow River and Bohai Bay.Here,we applied variance partitioning techniques to assess the relative effects of spatial and environmental variables on species richness and composition in the YRE.We also conducted a species indicator analysis to identify characteristic species for three subestuaries within the YRE.Partial redundancy analysis showed that the variations in species richness and composition were explained by both environmental and spatial factors.The majority of explained variation in species richness and composition was attributable to local environmental factors.Among the environmental variables,soil salinity made the greatest contribution to species abundance and composition.Soil salinity was the most important factor in the Diaokou subestuary,while soil moisture was the most important factor influencing species richness in the Qingshui and Chahe subestuaries.The combined effects of soil salinity and moisture determined species richness and composition in the wetlands.These results increase our understanding of the organization and assembly of estuarine plant communities.展开更多
文摘With the popularization of the Intemet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society, physical space, and cyberspace, the information environment related to the current development of artificial intelligence (AI) has profoundly changed. AI faces important adjustments, and scientific foundations are confronted with new breakthroughs, as AI enters a new stage: AI 2.0. This paper briefly reviews the 60-year developmental history of AI, analyzes the external environment promoting the formation of AI 2.0 along with changes in goals, and describes both the beginning of the technology and the core idea behind AI 2.0 development. Furthermore, based on combined social demands and the information environment that exists in relation to Chinese development, suggestions on the develoDment of Al 2.0 are given.
基金Project (20507022) supported by the National Natural Science Foundation of ChinaProject (EREH050303) supported by the Foundation of Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health
文摘The contamination and environmental risk assessment of the toxic elements in sediments from the middle-downstream (Zhuzhou-Changsha section) of the Xiangjiang River in Hunan Province of China were studied. The results show that As, Cd, Pb and Zn are major contaminants in sediments, and average concentrations of these elements significantly exceed both the Control Standards for Pollutants in Sludge of China (GB4284-84) for agricultural use in acidic soils and the effect range median (ERM) values. The average concentrations of As, Cd and Pb in the river water slightly exceed the limit of Surface Water Environment Quality Standard (GB3838-2002). The concentrations of As and Cr in depth profiles extensively change, but slight changes are observed in Pb and Zn. Cd and Zn in most sediment samples can easily enter the food-chain and bring possible ecotoxicological risk to organisms living in sediments according to the risk assessment code.
基金supported by the National Natural Science Foundation of China (Grant No. 91025002)
文摘Understanding the factors that drive variation in species distribution is a central theme of ecological research. Although several studies focused on alpine vegetation, few efforts have been made to identify the environmental factors that are responsible for the variations in species composition and richness of alpine shrublands using numerical methods. In the present study, we investigated vegetation and associated environmental variables from 45 sample plots in the middle Qilian Mountains of the northwestern China to classify different community types and to elucidate the species- environment relationships. We also estimated the relative contributions of topography and site conditions to spatial distribution patterns of the shrub communities using the variation partitioning. The results showed that four shrub community types were identified and striking differences in fioristic composition were found among them. Species composition greatly depended on elevation, slope, shrub cover, soil pH and organic carbon. The important determinants of species richness were soil bulk density and slope. No significant differences in species richness were detected among the community types. Topography and site conditions had almost equal effects on compositional variation. Nonetheless,a large amount of the variation in species composition remained unexplained.
基金supported by National Science & Technology Pillar in the 11th Five-Year Program(Grant No.2006BAC01A13)
文摘For successful conservation and restoration of biodiversity,it is important to understand how diversity is regulated.In the ecological research community,a current topic of interest is how much of the variation in plant species richness and composition is explained by environmental variation(niche-based model),relative to spatial processes(neutral theory).The Yellow River Estuary(YRE) is a newly formed and fragile wetland ecosystem influenced by both the Yellow River and Bohai Bay.Here,we applied variance partitioning techniques to assess the relative effects of spatial and environmental variables on species richness and composition in the YRE.We also conducted a species indicator analysis to identify characteristic species for three subestuaries within the YRE.Partial redundancy analysis showed that the variations in species richness and composition were explained by both environmental and spatial factors.The majority of explained variation in species richness and composition was attributable to local environmental factors.Among the environmental variables,soil salinity made the greatest contribution to species abundance and composition.Soil salinity was the most important factor in the Diaokou subestuary,while soil moisture was the most important factor influencing species richness in the Qingshui and Chahe subestuaries.The combined effects of soil salinity and moisture determined species richness and composition in the wetlands.These results increase our understanding of the organization and assembly of estuarine plant communities.