China placed 2 scientific experiment satellites into preset orbits atop a LM-4B launch vehicle on Sept. 9, 2004. A LM-4B blasted off at 7:14 am from Taiyuan Satellite Launch Center in Shanxi Province. Sources from the...China placed 2 scientific experiment satellites into preset orbits atop a LM-4B launch vehicle on Sept. 9, 2004. A LM-4B blasted off at 7:14 am from Taiyuan Satellite Launch Center in Shanxi Province. Sources from the Xi'an Satellite Monitor and Control Center said that one satellite,展开更多
The variations of ocean environmental parameters invariably result in variations of local modal wave numbers of a sound pressure field. The asymptotic Hankel transform with a short sliding window is applied to the com...The variations of ocean environmental parameters invariably result in variations of local modal wave numbers of a sound pressure field. The asymptotic Hankel transform with a short sliding window is applied to the complex sound pressure field in the water containing a mesoscale eddy to examine the variation of local modal wave numbers in such a range-dependent environment. The numerical simulation results show that modal wave number spectra obtained by this method can reflect the location and strength of a mesoscale eddy, therefore it can be used to monitor the strength and spatial scale of ocean mesoscale eddies.展开更多
文摘China placed 2 scientific experiment satellites into preset orbits atop a LM-4B launch vehicle on Sept. 9, 2004. A LM-4B blasted off at 7:14 am from Taiyuan Satellite Launch Center in Shanxi Province. Sources from the Xi'an Satellite Monitor and Control Center said that one satellite,
文摘The variations of ocean environmental parameters invariably result in variations of local modal wave numbers of a sound pressure field. The asymptotic Hankel transform with a short sliding window is applied to the complex sound pressure field in the water containing a mesoscale eddy to examine the variation of local modal wave numbers in such a range-dependent environment. The numerical simulation results show that modal wave number spectra obtained by this method can reflect the location and strength of a mesoscale eddy, therefore it can be used to monitor the strength and spatial scale of ocean mesoscale eddies.