As one of the interesting optical techniques for measurements of the velocity,the spatial filtering method is treated briefly in this paper.We shown theoretical analysis and calculation of spatial filtering velocimetr...As one of the interesting optical techniques for measurements of the velocity,the spatial filtering method is treated briefly in this paper.We shown theoretical analysis and calculation of spatial filtering velocimetry,and discussed two-dimensional measurements of the velocity.About the data processing,we used A/D conversion and interfaced with a microcomputer,so that the data can be processed automatically by the microcomputer.The preliminary experiment was performed and the experimental results show the usefulness of the present method for measurements of the velocity.展开更多
Kinetic Alfven Wave (KAW) is one of the low-frequency electromagnetic fluctuations that are identified extensively in space plasmas by in situ observations of satellites and has been an interesting topic for discussio...Kinetic Alfven Wave (KAW) is one of the low-frequency electromagnetic fluctuations that are identified extensively in space plasmas by in situ observations of satellites and has been an interesting topic for discussion widely in the fields of laboratory, space, and astrophysical plasmas because of its potential importance in plasma particle energization. Some satellite observations show that the number density ratio of the oxygen ions to the ambient plasma is 30% similar to 50%, sometimes, even as high as 80%. In this paper, effects of heavy ion species on KAWs are studied in a low-beta plasma. The results show that heavy ions not only considerably reduce the propagation speed of KAWs, but also remarkably influence the parallel component of perturbed electric field of KAWs (to the ambient magnetic field). The ratio of parallel to perpendicular components of perturbed field decreases (or increases) with the heavy ion abundance for KAWs dominated by the electron inertial length (or by ion acoustic gyroradius). In particular, the resonant condition of KAWs with thermal electrons is modified by the heavy ion species.展开更多
A new symplectic geometrical high-frequency approximation method for solving the propagation of electromagnetic wave in the two-dimensional inhomogeneous medium is used in this paper. The propagating caustic problem o...A new symplectic geometrical high-frequency approximation method for solving the propagation of electromagnetic wave in the two-dimensional inhomogeneous medium is used in this paper. The propagating caustic problem of electromagnetic wave is translated into non-caustic problem by the coordinate transform on the symplectic space. The high-frequency approximation solution that includes the caustic region is obtained with the method combining with the geometrical optics. The drawback that the solution in the caustic region can not be obtained with geometrical optics is overcome by this method. The results coincide well with that of finite element method.展开更多
Electrons are believed to avoid one another in space(correlation) due to the Coulomb repulsion and/or the Pauli exclusion principle.It is shown, using examples of two-electron systems, that indeed the mean electron-el...Electrons are believed to avoid one another in space(correlation) due to the Coulomb repulsion and/or the Pauli exclusion principle.It is shown, using examples of two-electron systems, that indeed the mean electron-electron distance increases in case of the ground electronic state as compared to the independent electron model. It is demonstrated however that there exist excited states, often of low energy, in which the electrons, while having a lot of free physical space(with nuclei being absent), choose to be close to each other in their motion("anticorrelation"), as if they mutually attracted one another. The source of this effect, quantummechanical in nature, is the orthogonality of the eigenfunctions, that forces the electronic wave functions to differ widely, even at the price of short electron-electron distances. There are also excited states with a mixed behaviour, with complex and often intriguing correlation-anticorrelation patterns.展开更多
文摘As one of the interesting optical techniques for measurements of the velocity,the spatial filtering method is treated briefly in this paper.We shown theoretical analysis and calculation of spatial filtering velocimetry,and discussed two-dimensional measurements of the velocity.About the data processing,we used A/D conversion and interfaced with a microcomputer,so that the data can be processed automatically by the microcomputer.The preliminary experiment was performed and the experimental results show the usefulness of the present method for measurements of the velocity.
文摘Kinetic Alfven Wave (KAW) is one of the low-frequency electromagnetic fluctuations that are identified extensively in space plasmas by in situ observations of satellites and has been an interesting topic for discussion widely in the fields of laboratory, space, and astrophysical plasmas because of its potential importance in plasma particle energization. Some satellite observations show that the number density ratio of the oxygen ions to the ambient plasma is 30% similar to 50%, sometimes, even as high as 80%. In this paper, effects of heavy ion species on KAWs are studied in a low-beta plasma. The results show that heavy ions not only considerably reduce the propagation speed of KAWs, but also remarkably influence the parallel component of perturbed electric field of KAWs (to the ambient magnetic field). The ratio of parallel to perpendicular components of perturbed field decreases (or increases) with the heavy ion abundance for KAWs dominated by the electron inertial length (or by ion acoustic gyroradius). In particular, the resonant condition of KAWs with thermal electrons is modified by the heavy ion species.
基金National Natural Science Foundation of China (No.69971001)
文摘A new symplectic geometrical high-frequency approximation method for solving the propagation of electromagnetic wave in the two-dimensional inhomogeneous medium is used in this paper. The propagating caustic problem of electromagnetic wave is translated into non-caustic problem by the coordinate transform on the symplectic space. The high-frequency approximation solution that includes the caustic region is obtained with the method combining with the geometrical optics. The drawback that the solution in the caustic region can not be obtained with geometrical optics is overcome by this method. The results coincide well with that of finite element method.
文摘Electrons are believed to avoid one another in space(correlation) due to the Coulomb repulsion and/or the Pauli exclusion principle.It is shown, using examples of two-electron systems, that indeed the mean electron-electron distance increases in case of the ground electronic state as compared to the independent electron model. It is demonstrated however that there exist excited states, often of low energy, in which the electrons, while having a lot of free physical space(with nuclei being absent), choose to be close to each other in their motion("anticorrelation"), as if they mutually attracted one another. The source of this effect, quantummechanical in nature, is the orthogonality of the eigenfunctions, that forces the electronic wave functions to differ widely, even at the price of short electron-electron distances. There are also excited states with a mixed behaviour, with complex and often intriguing correlation-anticorrelation patterns.