The current-voltage(I-V) characteristics of cBN crystal sandwiched between two metallic electrodes are measured and found to be nonlinear. Over 20 samples are measured at room temperature with various electrodes, an...The current-voltage(I-V) characteristics of cBN crystal sandwiched between two metallic electrodes are measured and found to be nonlinear. Over 20 samples are measured at room temperature with various electrodes, and the resulting curves are all similar in shape. When a voltage of about 560V is applied to the cBN crystal, the emitted light is visible to the naked eye in a dark room. We explain these phenomena by the space charge limited current and the electronic transition between the X and Г valleys of the conduction band.展开更多
All-inorganic zero-dimensional(0D)tetrahedrite(Cu12Sb4S13,CAS)quantum dots(QDs)have attracted extensive attention due to their excellent optical properties,bandgap tunability,and carrier mobility.In this paper,various...All-inorganic zero-dimensional(0D)tetrahedrite(Cu12Sb4S13,CAS)quantum dots(QDs)have attracted extensive attention due to their excellent optical properties,bandgap tunability,and carrier mobility.In this paper,various sized CAS QDs(5.1,6.7,and 7.9 nm)are applied as a switching layer with the structure F:Sn O2(FTO)/CAS QDs/Au,and in doing so,the nonvolatile resistive-switching behavior of electronics based on CAS QDs is reported.The SET/RESET voltage tunability with size dependency is observed for memory devices based on CAS QDs for the first time.Results suggest that differently sized CAS QDs result in different band structures and the regulation of the SET/RESET voltage occurs simply and effectively due to the uniform size of the CAS QDs.Moreover,the presented memory devices have reliable bipolar resistive-switching properties,a resistance(ON/OFF)ratio larger than 104,high reproducibility,and good data retention ability.After 1.4×10^6s of stability testing and 104cycles of quick read tests,the change rate of the ON/OFF ratio is smaller than 0.1%.Furthermore,resistiveswitching stability can be improved by ensuring a uniform particle size for the CAS QDs.The theoretical calculations suggest that the space-charge-limited currents(SCLCs),which are functioned by Cu 3d,Cu 3p and S 3p to act as electron selftrapping centers due to their quantum confinement and form conduction pathways under an electric field,are responsible for the resistive-switching effect.This paper demonstrates that CAS QDs are promising as a novel resistive-switching material in memory devices and can be used to facilitate the application of next-generation nonvolatile memory.展开更多
文摘The current-voltage(I-V) characteristics of cBN crystal sandwiched between two metallic electrodes are measured and found to be nonlinear. Over 20 samples are measured at room temperature with various electrodes, and the resulting curves are all similar in shape. When a voltage of about 560V is applied to the cBN crystal, the emitted light is visible to the naked eye in a dark room. We explain these phenomena by the space charge limited current and the electronic transition between the X and Г valleys of the conduction band.
基金supported by the National Natural Science Foundation of China(51572205,11674258 and 51802093)the Joint Fund of Ministry of Education for Equipment Pre-research the Fundamental Research(6141A02022262)+1 种基金the Excellent Dissertation Cultivation Funds of Wuhan University of Technology(2018-YS-001)the Fundamental Research Funds for the Central Universities(2019zy-007)。
文摘All-inorganic zero-dimensional(0D)tetrahedrite(Cu12Sb4S13,CAS)quantum dots(QDs)have attracted extensive attention due to their excellent optical properties,bandgap tunability,and carrier mobility.In this paper,various sized CAS QDs(5.1,6.7,and 7.9 nm)are applied as a switching layer with the structure F:Sn O2(FTO)/CAS QDs/Au,and in doing so,the nonvolatile resistive-switching behavior of electronics based on CAS QDs is reported.The SET/RESET voltage tunability with size dependency is observed for memory devices based on CAS QDs for the first time.Results suggest that differently sized CAS QDs result in different band structures and the regulation of the SET/RESET voltage occurs simply and effectively due to the uniform size of the CAS QDs.Moreover,the presented memory devices have reliable bipolar resistive-switching properties,a resistance(ON/OFF)ratio larger than 104,high reproducibility,and good data retention ability.After 1.4×10^6s of stability testing and 104cycles of quick read tests,the change rate of the ON/OFF ratio is smaller than 0.1%.Furthermore,resistiveswitching stability can be improved by ensuring a uniform particle size for the CAS QDs.The theoretical calculations suggest that the space-charge-limited currents(SCLCs),which are functioned by Cu 3d,Cu 3p and S 3p to act as electron selftrapping centers due to their quantum confinement and form conduction pathways under an electric field,are responsible for the resistive-switching effect.This paper demonstrates that CAS QDs are promising as a novel resistive-switching material in memory devices and can be used to facilitate the application of next-generation nonvolatile memory.