期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进型轴向永磁调速器的优化设计 被引量:4
1
作者 吴迪 关焕新 +3 位作者 邱力伟 郭祎珅 杨柏 赵柏翔 《沈阳工程学院学报(自然科学版)》 2019年第2期141-148,共8页
首次提出了对轴向永磁调速器永磁转子结构的改进,并使AnsoftMaxwell电磁仿真软件构造训练样本,构建了基于BP神经网络的改进后轴向永磁调速器预测模型;采用空间粒子群算法进行改进并将其用于轴向永磁调速器预测模型的求解,得到最优轴向... 首次提出了对轴向永磁调速器永磁转子结构的改进,并使AnsoftMaxwell电磁仿真软件构造训练样本,构建了基于BP神经网络的改进后轴向永磁调速器预测模型;采用空间粒子群算法进行改进并将其用于轴向永磁调速器预测模型的求解,得到最优轴向永磁调速器结构。通过Ansoft软件进行仿真研究,其结果表明使用空间粒子群算法设计的轴向永磁调速器性能得到了极大地改善。 展开更多
关键词 改进型轴向永磁调速器 优化设计 空间粒子群法
下载PDF
Multi-objective particle swarm optimization by fusing multiple strategies
2
作者 XU Zhenxing ZHU Shuiran 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期284-299,共16页
To improve the convergence and distributivity of multi-objective particle swarm optimization,we propose a method for multi-objective particle swarm optimization by fusing multiple strategies(MOPSO-MS),which includes t... To improve the convergence and distributivity of multi-objective particle swarm optimization,we propose a method for multi-objective particle swarm optimization by fusing multiple strategies(MOPSO-MS),which includes three strategies.Firstly,the average crowding distance method is proposed,which takes into account the influence of individuals on the crowding distance and reduces the algorithm’s time complexity and computational cost,ensuring efficient external archive maintenance and improving the algorithm’s distribution.Secondly,the algorithm utilizes particle difference to guide adaptive inertia weights.In this way,the degree of disparity between a particle’s historical optimum and the population’s global optimum is used to determine the value of w.With different degrees of disparity,the size of w is adjusted nonlinearly,improving the algorithm’s convergence.Finally,the algorithm is designed to control the search direction by hierarchically selecting the globally optimal policy,which can avoid a single search direction and eliminate the lack of a random search direction,making the selection of the global optimal position more objective and comprehensive,and further improving the convergence of the algorithm.The MOPSO-MS is tested against seven other algorithms on the ZDT and DTLZ test functions,and the results show that the MOPSO-MS has significant advantages in terms of convergence and distributivity. 展开更多
关键词 multi-objective particle swarm optimization(MOPSO) spatially crowding congestion distance differential guidance weight hierarchical selection of global optimum
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部