Natural resource statistics are often unavailable for small ecological or economic regions and policymakers have to rely on state-level datasets to evaluate the status of their resources (i.e., forests, rangelands, g...Natural resource statistics are often unavailable for small ecological or economic regions and policymakers have to rely on state-level datasets to evaluate the status of their resources (i.e., forests, rangelands, grasslands, agriculture, etc.) at the regional or local level. These resources can be evaluated using small-area estimation techniques. However, it is unknown which small area technique produces the most valid and precise results. The reliability and accuracy of two methods, synthetic and regression estimators, used in smallarea analyses, were examined in this study. The two small-area analysis methods were applied to data from Jalisco's state-wide natural resource inventory to examine how well each technique predicted selected characteristics of forest stand structure. The regression method produced the most valid and precise estimates of forest stand characteristics at multiple geographical scales. Therefore, state and local resource managers should utilize the regression method unless appropriate auxiliary information is not available.展开更多
The kinematic accuracy of space manipulator determines whether the spacecraft performs normally or not. Problems pertaining to structural deformation have received increased attention in recent times. In the space man...The kinematic accuracy of space manipulator determines whether the spacecraft performs normally or not. Problems pertaining to structural deformation have received increased attention in recent times. In the space manipulator systems, flexible arms and joints can induce drastic dynamic instabilities. In applications such as the space station, kinematic error due to structural deformation can jointly affect the performance characteristics. And it is crucial for accuracy control of space manipulator to establish a precision index. Here we analyze the dynamics characteristic of flexible space manipulator considering the hysteresis of harmonic reducer based on method of nonconstraint boundary modal. For the sake of describing the output accuracy, we integrate the method of analytic hierarchy process(AHP) to establish a comprehensive evaluation index. A numerical simulation is performed to analyze the nonlinear dynamic characteristics of space manipulator with harmonic reducer. With the analysis of accuracy assessment, the relation among the hysteresis angle, rigidity and output accuracy is revealed. Considering the elastic modulus of flexible space manipulator and the hysteresis angle of harmonic reducer, we conduct an evaluation of output characteristics of flexible space manipulator with the proposed comprehensive evaluation index. The accuracy evaluation of output characteristics based on the proposed comprehensive evaluation index is implemented in the initial stage of space manipulator's design, which can not only solve the problems existing in the design but also save cost savings for ground tests. The results can be used in designing and optimizing future space manipulators, which may provide valuable references for design and thermal control of the space manipulator.展开更多
文摘Natural resource statistics are often unavailable for small ecological or economic regions and policymakers have to rely on state-level datasets to evaluate the status of their resources (i.e., forests, rangelands, grasslands, agriculture, etc.) at the regional or local level. These resources can be evaluated using small-area estimation techniques. However, it is unknown which small area technique produces the most valid and precise results. The reliability and accuracy of two methods, synthetic and regression estimators, used in smallarea analyses, were examined in this study. The two small-area analysis methods were applied to data from Jalisco's state-wide natural resource inventory to examine how well each technique predicted selected characteristics of forest stand structure. The regression method produced the most valid and precise estimates of forest stand characteristics at multiple geographical scales. Therefore, state and local resource managers should utilize the regression method unless appropriate auxiliary information is not available.
文摘The kinematic accuracy of space manipulator determines whether the spacecraft performs normally or not. Problems pertaining to structural deformation have received increased attention in recent times. In the space manipulator systems, flexible arms and joints can induce drastic dynamic instabilities. In applications such as the space station, kinematic error due to structural deformation can jointly affect the performance characteristics. And it is crucial for accuracy control of space manipulator to establish a precision index. Here we analyze the dynamics characteristic of flexible space manipulator considering the hysteresis of harmonic reducer based on method of nonconstraint boundary modal. For the sake of describing the output accuracy, we integrate the method of analytic hierarchy process(AHP) to establish a comprehensive evaluation index. A numerical simulation is performed to analyze the nonlinear dynamic characteristics of space manipulator with harmonic reducer. With the analysis of accuracy assessment, the relation among the hysteresis angle, rigidity and output accuracy is revealed. Considering the elastic modulus of flexible space manipulator and the hysteresis angle of harmonic reducer, we conduct an evaluation of output characteristics of flexible space manipulator with the proposed comprehensive evaluation index. The accuracy evaluation of output characteristics based on the proposed comprehensive evaluation index is implemented in the initial stage of space manipulator's design, which can not only solve the problems existing in the design but also save cost savings for ground tests. The results can be used in designing and optimizing future space manipulators, which may provide valuable references for design and thermal control of the space manipulator.