本文在Stein恒等式(Stein’s identity)的框架下,给出了一种适用于有限样本场合的全新的修正Akaike信息准则(corrected Akaike information criterion),所提出的新准则适用于非常一般的协方差结构.在一定的正则性条件下,本文建立了所提...本文在Stein恒等式(Stein’s identity)的框架下,给出了一种适用于有限样本场合的全新的修正Akaike信息准则(corrected Akaike information criterion),所提出的新准则适用于非常一般的协方差结构.在一定的正则性条件下,本文建立了所提出准则的渐近有效性.应用带有自回归误差的空间回归模型进行模拟,结果表明,在备选模型与真实的数据生成过程之间的差异较小时,本文所提出方法的表现是令人满意的.当这种差异变大时,本文所提出的方法与其他已有方法相比也非常有竞争力.所提出的方法也被用于一组实际数据(社区犯罪数据)的分析中,所得到的结果更进一步支持了我们的方法在实际数据分析中的应用.展开更多
文摘本文在Stein恒等式(Stein’s identity)的框架下,给出了一种适用于有限样本场合的全新的修正Akaike信息准则(corrected Akaike information criterion),所提出的新准则适用于非常一般的协方差结构.在一定的正则性条件下,本文建立了所提出准则的渐近有效性.应用带有自回归误差的空间回归模型进行模拟,结果表明,在备选模型与真实的数据生成过程之间的差异较小时,本文所提出方法的表现是令人满意的.当这种差异变大时,本文所提出的方法与其他已有方法相比也非常有竞争力.所提出的方法也被用于一组实际数据(社区犯罪数据)的分析中,所得到的结果更进一步支持了我们的方法在实际数据分析中的应用.