基于传统的多向主元分析MPCA(multiway principal component analysis)常会导致误诊断,且对批过程难以保证在线状态监测和故障诊断的实时性,提出了一种基于特征子空间的滑动窗主元分析方法。在实时故障监测与诊断时,该方法采用适当大小...基于传统的多向主元分析MPCA(multiway principal component analysis)常会导致误诊断,且对批过程难以保证在线状态监测和故障诊断的实时性,提出了一种基于特征子空间的滑动窗主元分析方法。在实时故障监测与诊断时,该方法采用适当大小的滑动窗逐步更新当前子数据空间,对当前子数据空间故障的识别通过依次计算其与基底库中各故障的匹配度来进行。这种方法克服了传统的MPCA不能处理非线性过程和实时性问题,并避免了MPCA在线应用时预报未来测量值带来的误差, 提高了批过程性能监测和故障诊断的准确性。展开更多
Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial out...Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial outliers,subjectively determined the weights of hybrid distance measures,and produced diverse clustering results.In this study,we first redefined the dual clustering problem and related concepts to highlight the clustering criteria.We then presented a self-organizing dual clustering algorithm (SDC) based on the self-organizing feature map and certain spatial analysis operations,including the Voronoi diagram and polygon aggregation and amalgamation.The algorithm employs a hybrid distance measure that combines geometric distance and non-spatial similarity,while the clustering spectrum analysis helps to determine the weight of non-spatial similarity in the measure.A case study was conducted on a spatial database of urban land price samples in Wuhan,China.SDC detected spatial outliers and clustered the points into spatially connective and attributively homogenous sub-groups.In particular,SDC revealed zonal areas that describe the actual distribution of land prices but were not demonstrated by other methods.SDC reduced the subjectivity in dual clustering.展开更多
文摘基于传统的多向主元分析MPCA(multiway principal component analysis)常会导致误诊断,且对批过程难以保证在线状态监测和故障诊断的实时性,提出了一种基于特征子空间的滑动窗主元分析方法。在实时故障监测与诊断时,该方法采用适当大小的滑动窗逐步更新当前子数据空间,对当前子数据空间故障的识别通过依次计算其与基底库中各故障的匹配度来进行。这种方法克服了传统的MPCA不能处理非线性过程和实时性问题,并避免了MPCA在线应用时预报未来测量值带来的误差, 提高了批过程性能监测和故障诊断的准确性。
基金supported by the National Natural Science Foundation of China(Grant No.40901188)the Key Laboratory of Geo-informatics of the State Bureau of Surveying and Mapping(Grant No.200906)the Fundamental Research Funds for the Central Universities(Grant No.4082002)
文摘Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial outliers,subjectively determined the weights of hybrid distance measures,and produced diverse clustering results.In this study,we first redefined the dual clustering problem and related concepts to highlight the clustering criteria.We then presented a self-organizing dual clustering algorithm (SDC) based on the self-organizing feature map and certain spatial analysis operations,including the Voronoi diagram and polygon aggregation and amalgamation.The algorithm employs a hybrid distance measure that combines geometric distance and non-spatial similarity,while the clustering spectrum analysis helps to determine the weight of non-spatial similarity in the measure.A case study was conducted on a spatial database of urban land price samples in Wuhan,China.SDC detected spatial outliers and clustered the points into spatially connective and attributively homogenous sub-groups.In particular,SDC revealed zonal areas that describe the actual distribution of land prices but were not demonstrated by other methods.SDC reduced the subjectivity in dual clustering.