期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
DenseNet结合空间通道注意力机制的环境声音分类 被引量:1
1
作者 董绍江 刘伟 《重庆理工大学学报(自然科学)》 北大核心 2023年第11期179-187,共9页
音乐信息识别(MIR)和自动语音识别(ASR)都是以结构化声音为特点的声音识别,环境声音识别在声音识别领域的难度很大。为了充分利用从环境声中提取的Log-Mel谱图的空间特征与通道特征,提出了一种基于密集连接卷积网络(DenseNet)的空间通... 音乐信息识别(MIR)和自动语音识别(ASR)都是以结构化声音为特点的声音识别,环境声音识别在声音识别领域的难度很大。为了充分利用从环境声中提取的Log-Mel谱图的空间特征与通道特征,提出了一种基于密集连接卷积网络(DenseNet)的空间通道注意力机制。使用DenseNet对Log-Mel谱图进行特征提取,引入空间通道注意力机制使网络更加关注显著特征;为了解决数据不足导致的过拟合问题,将混合数据增强的方法应用于Log-Mel谱图,从而保证了数据的多样性;在2个公共数据集(ESC-50和ESC-10)验证所提方法的有效性。结果表明:所提的空间通道注意力机制模型能够使神经网络对环境声音的识别率分别达到79.3%(ESC-50)和94.3%(ESC-10)。 展开更多
关键词 环境声音分类 空间通道注意力机制 密集连接卷积网络 混合数据增强
下载PDF
基于空间通道注意力机制与多尺度融合的交通标志识别研究 被引量:8
2
作者 黄志强 李军 《南京邮电大学学报(自然科学版)》 北大核心 2022年第2期93-102,共10页
通过YOLOV3深度神经网络算法可以实现道路交通标志的自动检测与识别,由于YOLOV3运算量较大,很难在小型嵌入式平台上使用,针对这一问题,文中提出了改进型的轻量化YOLOV3-3ctiny神经网络模型。为了融合浅层特征图的空间信息与深层特征图... 通过YOLOV3深度神经网络算法可以实现道路交通标志的自动检测与识别,由于YOLOV3运算量较大,很难在小型嵌入式平台上使用,针对这一问题,文中提出了改进型的轻量化YOLOV3-3ctiny神经网络模型。为了融合浅层特征图的空间信息与深层特征图的语义信息,将第19层卷积层通过上采样后与第7层卷积层相连接,多尺度融合后输入YOLO层形成新的特征金字塔,以此提高小目标的识别率。同时,为使网络更加关注交通标志的细节信息,在特征金字塔网络中增添能够增强前景信息降低背景信息的空间通道注意力机制。使用Kmeans聚类算法对数据集作聚类处理,获得一组先验框。在长沙理工大学交通标志数据集上进行测试,实验结果表明,改进后算法的识别率达到91.8%,与YOLOV3-tiny算法相比提高了24.9个百分点,而与YOLOV3算法相比,每张图片的检测时间降低至0.133s,降低了49.6%,该算法具有较强的实时性和准确性。 展开更多
关键词 交通标志 轻量化网络 YOLOV3-3ctiny 多尺度融合 特征金字塔 空间通道注意力机制
下载PDF
基于端口注意力与通道空间注意力的网络异常流量检测
3
作者 肖斌 甘昀 +2 位作者 汪敏 张兴鹏 王照星 《计算机应用》 CSCD 北大核心 2024年第4期1027-1034,共8页
网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端... 网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端口注意力模块(PAM)和通道空间注意力模块(CBAM)的网络异常流量检测模型。首先,将原始网络流量作为PAM的输入,分离得到端口号属性送入全连接层,得到学习后的端口注意力权重值,并与其他流量属性点乘,输出端口注意力后的流量数据;其次,将流量数据转换成灰度图,利用CNN和CBAM更充分地提取特征图在通道和空间上的信息;最后,使用焦点损失函数解决数据不平衡的问题。所提PAM具有参数量少、即插即用和普遍适用的优点。在CICIDS2017数据集上,所提模型的异常流量检测二分类任务准确率为99.18%,多分类任务准确率为99.07%,对只有少数训练样本的类别也有较高的识别率。 展开更多
关键词 异常流量检测 注意力机制 数据不平衡 轻量级网络 通道空间注意力模块
下载PDF
基于卷积神经网络与通道和空间注意力机制的房颤预测模型研究
4
作者 王量弘 蔡冰洁 +3 位作者 刘硕 杨涛 王新康 高洁 《福建医药杂志》 CAS 2024年第1期1-4,共4页
目的采用人工智能技术提出一种模型,以对房颤进行早期预防和诊断。方法提出一种基于卷积神经网络(convolutional neural network,CNN)与通道和空间注意力机制(convolutional block attention module,CBAM)的模型用于对房颤的诊断与预测... 目的采用人工智能技术提出一种模型,以对房颤进行早期预防和诊断。方法提出一种基于卷积神经网络(convolutional neural network,CNN)与通道和空间注意力机制(convolutional block attention module,CBAM)的模型用于对房颤的诊断与预测。结果根据长期心房颤动数据库、MIT-BIH心房颤动数据库和MIT-BIH正常窦性心律数据库的数据,提出的模型在全盲的情况下总体准确率达94.2%。结论提出的模型满足了医学心电图解释的需要,为房颤的预测研究提供了新思路。 展开更多
关键词 心电信号 房颤 卷积神经网络 通道空间注意力机制
下载PDF
采用空间和通道激励注意力机制优化ResNet-50的CFRP/TC4叠层材料钻削刀具磨损状态监测
5
作者 聂鹏 杨程越 +2 位作者 彭新月 于家鹤 潘五九 《中国机械工程》 EI CAS CSCD 北大核心 2024年第10期1793-1801,共9页
针对碳纤维增强复合材料(CFRP)与钛合金组成的叠层材料在制备装配孔时存在刀具磨损严重的问题,提出了一种空间和通道激励注意力机制(scSE)优化深度残差神经网络(ResNet-50)的刀具磨损监测方法。开展钻削实验,采集钻削过程中的力和温度信... 针对碳纤维增强复合材料(CFRP)与钛合金组成的叠层材料在制备装配孔时存在刀具磨损严重的问题,提出了一种空间和通道激励注意力机制(scSE)优化深度残差神经网络(ResNet-50)的刀具磨损监测方法。开展钻削实验,采集钻削过程中的力和温度信号,信号经连续小波变换转换为小波尺度谱。搭建ResNet-50网络结构,从空间和通道双维度对卷积提取的特征图进行权重标定。研究结果表明,scSE可以从空间和通道两个维度做到增强有用特征,抑制无用特征,经scSE优化的网络结构识别准确度达到96.15%。 展开更多
关键词 刀具磨损 连续小波变换 空间通道激励注意力机制 深度残差神经网络
下载PDF
一种新的基于通道-空间融合注意力及SwinT的细粒度图像分类算法
6
作者 姜昊 凌萍 陈寸生保 《南京师范大学学报(工程技术版)》 CAS 2023年第3期36-42,共7页
细粒度图像分类是计算机视觉领域的一大分类任务,其难点在于如何通过类别监督信息自主地找到判别性区域.提出一种新的通道-空间融合注意力模块,基于该模块设计了一种新的Swin Transformer算法SwinT⁃NCSA(a Swin Transformer based on a ... 细粒度图像分类是计算机视觉领域的一大分类任务,其难点在于如何通过类别监督信息自主地找到判别性区域.提出一种新的通道-空间融合注意力模块,基于该模块设计了一种新的Swin Transformer算法SwinT⁃NCSA(a Swin Transformer based on a novel channel⁃spatial attention module),分别从通道维和空间维同时提取特征,再将其融入到Swin Transformer模型中以提高其小尺度中多头注意力信息的提取能力.SwinT⁃NCSA算法特别关注了对分类有用的区域,同时忽视对分类无用的背景区域,以此在细粒度图像分类任务中达到较高的分类准确率.在FGVC Aircraft飞机数据集、CUB-200-2011鸟类数据集和Stanford Cars车类数据集3个公共数据集上的实验表明,SwinT⁃NCSA算法可以分别取得93.3%、88.4%和94.7%的准确率,优于同类算法. 展开更多
关键词 细粒度图像分类 Swin TRANSFORMER 通道-空间融合注意力模块 深度学习 弱监督学习
下载PDF
融合双层注意力网络的端到端老挝车牌照识别方法
7
作者 黄彬煌 毛存礼 +3 位作者 陈蕊 余正涛 黄于欣 王振晗 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期862-870,共9页
在中老道路互通大背景下,老挝车牌照识别研究对中国跨境车辆管理十分重要,但现有的单行车牌照识别方法无法直接应用于老挝双行车牌照识别任务中.针对老挝车牌照上行省份字符排列紧密、难以分割和下行辅音字符相似度高、难以识别的问题,... 在中老道路互通大背景下,老挝车牌照识别研究对中国跨境车辆管理十分重要,但现有的单行车牌照识别方法无法直接应用于老挝双行车牌照识别任务中.针对老挝车牌照上行省份字符排列紧密、难以分割和下行辅音字符相似度高、难以识别的问题,结合分割的思想提出一种融合双层注意力网络的端到端老挝车牌照识别方法.通过通道及空间注意力提取并加强上行省份特征和下行字符特征表示;将分类思想应用于省份信息获取,有效地处理因字符粘连而无法做单字符识别的问题;使用序列标注的方法缓解相似字符识别困难,提高字符识别准确率.实验结果表明,提出方法相比基线模型,准确率提升了0.8个百分点,达到92.7%. 展开更多
关键词 深度学习 老挝双行车牌照识别 双层注意力网络 通道空间注意力 端到端
下载PDF
注意力感知特征提取和融合的多模态人脸防伪检测方法
8
作者 刘苏 何岱蔚 +3 位作者 黄颖 万邦睿 刘学 郑钧予 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第5期1032-1041,共10页
针对多模态人脸防伪检测中如何有效融合多模态信息的问题,提出一种注意力感知特征提取和融合的多模态人脸防伪检测方法(attention-aware feature extraction and fusion,AFEF)。在跨模态特征融合部分利用通道和空间注意力机制探索不同... 针对多模态人脸防伪检测中如何有效融合多模态信息的问题,提出一种注意力感知特征提取和融合的多模态人脸防伪检测方法(attention-aware feature extraction and fusion,AFEF)。在跨模态特征融合部分利用通道和空间注意力机制探索不同模态之间的互补信息,以弥补单一模态特征表达不足的问题;利用卷积融合方式融合多模态特征,以避免信息覆盖或者无关信息强化的问题;在特征提取部分引入CBAM注意力机制,获得更细粒度的各模态特征表示,便于后续进行跨模态特征融合。实验结果表明,与当前其他主流多模态人脸防伪算法相比,提出的方法在CASIA-SURF和CeFA两个多模态数据集上的平均分类错误率(average classification error rate,ACER)均最低,算法有效。 展开更多
关键词 人脸防伪 多模态 跨模态特征融合 通道空间注意力
下载PDF
混合扩张卷积和注意力机制的路面裂缝检测 被引量:1
9
作者 瞿中 李明 《计算机工程与设计》 北大核心 2023年第8期2425-2431,共7页
针对复杂背景下路面裂缝检测困难的问题,提出一种基于混合扩张卷积和空间-通道注意力机制的路面裂缝检测算法。基于改进的U-Net网络,在编码阶段,使用空间-通道注意力机制增强裂缝特征,抑制非裂缝特征;在网络中间部分,使用混合扩张卷积... 针对复杂背景下路面裂缝检测困难的问题,提出一种基于混合扩张卷积和空间-通道注意力机制的路面裂缝检测算法。基于改进的U-Net网络,在编码阶段,使用空间-通道注意力机制增强裂缝特征,抑制非裂缝特征;在网络中间部分,使用混合扩张卷积实现在不增加额外模块的前提下增大网络的感受野;在解码阶段,融合多层次和多尺度特征使最终预测结果更接近路面真实情况。实验结果表明,所提算法能够快速准确地对路面裂缝进行检测,具有较强的鲁棒性。 展开更多
关键词 裂缝检测 深度学习 卷积神经网络 编码-解码结构 混合扩张卷积 空间-通道注意力机制 多尺度特征融合
下载PDF
融合注意力机制的多模态脑肿瘤MR图像分割
10
作者 毋小省 杨奇鸿 +1 位作者 唐朝生 孙君顶 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第9期1429-1438,共10页
针对在多模态MR图像分割中对不同模态特征间的关联性及全局和局部特征提取考虑不充分,导致分割精度降低的问题,基于注意力机制,提出多模态脑肿瘤MR图像分割方法.首先提出三重注意力模块,用于增强各模态特征间的关联性以及对感兴趣区域... 针对在多模态MR图像分割中对不同模态特征间的关联性及全局和局部特征提取考虑不充分,导致分割精度降低的问题,基于注意力机制,提出多模态脑肿瘤MR图像分割方法.首先提出三重注意力模块,用于增强各模态特征间的关联性以及对感兴趣区域的位置和边界信息精确判断;然后设计空间和通道注意力模块,用于双重捕获空间和通道上的全局及局部特征,增强对肿瘤组织结构信息的学习能力.在公开数据集BraTs18和BraTs19上的实验结果表明,分割全肿瘤时,所提方法的Dice系数、精确率、灵敏度和Hausdorff距离分别达到了90.62%,87.89%,90.08%和2.2583,均优于对比的同类方法. 展开更多
关键词 多模态图像 脑肿瘤分割 注意力机制 三重注意力 空间通道注意力
下载PDF
基于SimAM注意力机制的遥感图像场景分类
11
作者 林华燕 陈其兵 +1 位作者 陈伊平 杨静 《北京测绘》 2023年第7期933-937,共5页
针对遥感图像地形、地势复杂以及现有遥感图像分类方法准确率较差等问题,本文提出一种具有通道和空间注意机制的深度学习遥感图像分类模型。首先,使用残差网络作为特征提取主干网络;然后,对主干网络添加三维注意力机制模块,使模型不仅... 针对遥感图像地形、地势复杂以及现有遥感图像分类方法准确率较差等问题,本文提出一种具有通道和空间注意机制的深度学习遥感图像分类模型。首先,使用残差网络作为特征提取主干网络;然后,对主干网络添加三维注意力机制模块,使模型不仅可学习通道信息还可学习空间信息;最后,在公开遥感图像数据集中训练并验证所提模型优越性。实验表明:所提方法在每个类别航拍图像的分类准确率均高于残差网络,整体分类准确率相较残差网络提高3.38%,高达89.27%,表明所提模型可以广泛应用于航拍图像分类场景中。 展开更多
关键词 遥感图像场景分类 残差网络 通道空间注意力机制
下载PDF
引入注意力机制的自监督光流计算 被引量:2
12
作者 安峰 戴军 +1 位作者 韩振 严仲兴 《图学学报》 CSCD 北大核心 2022年第5期841-848,共8页
光流计算是诸多计算机视觉系统的关键模块,广泛应用于动作识别、机器人定位与导航等领域。但目前端到端的光流计算仍受限于数据源的缺少,尤其是真实场景下的光流数据难以获取。人工合成的光流数据占绝大多数,且合成数据不能完全反应真... 光流计算是诸多计算机视觉系统的关键模块,广泛应用于动作识别、机器人定位与导航等领域。但目前端到端的光流计算仍受限于数据源的缺少,尤其是真实场景下的光流数据难以获取。人工合成的光流数据占绝大多数,且合成数据不能完全反应真实场景(如树叶晃动、行人倒影等),难以避免过拟合等情况。无监督或自监督方法可以利用海量的视频数据进行训练,摆脱了对数据集的依赖,是解决数据集缺少的有效途径。基于此搭建了一个自监督学习光流计算网络,其中的“Teacher”模块和“Student”模块集成了最新光流计算网络:稀疏相关体网络(SCV),减少了计算冗余量;同时引入注意力模型作为网络的一个节点,以提高图像特征在通道和空间上的维度属性。将SCV与注意力机制集成在自监督学习光流计算网络之中,在KITTI 2015数据集上的测试结果达到或超过了常见的有监督训练网络。 展开更多
关键词 光流计算 自监督学习 卷积注意力模块 空间/通道注意力 稀疏相关体
下载PDF
融合交叉注意力机制的图像任意风格迁移 被引量:6
13
作者 杨玥 冯涛 +1 位作者 梁虹 杨扬 《计算机科学》 CSCD 北大核心 2022年第S01期345-352,396,共9页
图像风格迁移指将一张普通照片转化为一张具有其他艺术风格效果的图像,随着深度学习的发展,出现了一些图像任意风格迁移算法,给定任意风格便能生成具有该风格的风格化图像。针对任意风格迁移算法中存在如何同时适应全局和局部风格,保持... 图像风格迁移指将一张普通照片转化为一张具有其他艺术风格效果的图像,随着深度学习的发展,出现了一些图像任意风格迁移算法,给定任意风格便能生成具有该风格的风格化图像。针对任意风格迁移算法中存在如何同时适应全局和局部风格,保持空间一致性问题,提出了一个融合交叉注意力的任意风格迁移算法网络,通过捕捉长程依赖,高效生成全局与局部风格协调的风格化图像;针对风格化图像的内容结构扭曲问题,在进行风格迁移之前,加入一组并行的通道空间注意力网络,该注意力网络能进一步细化关键特征,保留关键信息;除此之外,提出了一个新的损失函数,在消除伪影的同时能更好地保留内容结构信息。该算法能根据内容图像的语义空间分布,匹配语义上最接近的风格特征,高效灵活地调整局部风格,且能保留更多内容结构的原始信息。实验结果表明,所提算法能够生成任意风格且视觉效果更佳的高质量风格化图像。 展开更多
关键词 任意风格迁移 交叉注意力 通道空间注意力 卷积神经网络 特征融合 长程依赖
下载PDF
基于注意力和多级特征融合的铁路场景小尺度行人检测算法 被引量:6
14
作者 石瑞姣 陈后金 +3 位作者 李居朋 李艳凤 李丰 万成凯 《铁道学报》 EI CAS CSCD 北大核心 2022年第5期76-83,共8页
行人入侵是影响铁路行车安全的重要因素。为有效解决短焦距摄像机在大视场中小尺度行人检测精度低的问题,提出一种注意力机制引导下的多级特征融合网络模型。首先,将YOLOv3作为主干网络,针对多次降采样后行人特征丢失的问题,设计四倍降... 行人入侵是影响铁路行车安全的重要因素。为有效解决短焦距摄像机在大视场中小尺度行人检测精度低的问题,提出一种注意力机制引导下的多级特征融合网络模型。首先,将YOLOv3作为主干网络,针对多次降采样后行人特征丢失的问题,设计四倍降采样分支以利用高分辨率特征有效提取小尺度行人信息。其次,特征融合阶段引入通道-空间注意力机制以抑制低层特征中背景噪声干扰。最后,引入CIoU损失函数用于行人目标框的回归,解决均方误差损失函数存在的优化不一致及尺度敏感问题。实验结果表明,相较于经典YOLOv3以及现阶段主流目标检测算法,本算法具有更高的检测精度,在自建铁路私有数据集和Caltech公开数据集的各子集上对数平均漏检率均有明显降低。 展开更多
关键词 铁路行车安全 小尺度行人检测 多级特征融合 通道-空间注意力 CIoU损失函数
下载PDF
复杂战场环境下改进YOLOv5军事目标识别算法研究 被引量:2
15
作者 宋晓茹 刘康 +2 位作者 高嵩 陈超波 阎坤 《兵工学报》 EI CAS CSCD 北大核心 2024年第3期934-947,共14页
复杂战场环境下军事目标识别技术是提升战场情报获取能力的基础和关键。针对当前军事目标识别技术在复杂战场环境下漏检误检率高、实时性差等问题,提出一种基于改进YOLOv5模型的PB-YOLO军事目标识别算法。将改进的目标识别算法对于陆战... 复杂战场环境下军事目标识别技术是提升战场情报获取能力的基础和关键。针对当前军事目标识别技术在复杂战场环境下漏检误检率高、实时性差等问题,提出一种基于改进YOLOv5模型的PB-YOLO军事目标识别算法。将改进的目标识别算法对于陆战场军事单元的识别锚框进行重新聚类,以提升模型对于目标大小适应度,加速模型收敛;采用通道-空间并行注意力机制,增加模型对复杂战场环境下目标特征信息与位置信息关注度;在特征融合网络部分使用BiFPN以提升模型对于特征的融合能力与速度;采用Alpha_IoU损失函数加速模型收敛,解决当真实框与预测框重合时IoU计算退化问题。实验结果表明,在自建军事目标数据集下,改进算法与主流目标识别算法相比,在保证模型空间复杂度的同时,mAP值达到了90.17%。消融实验对比结果表明,改进后网络较原模型精度提升11.57%,具有较好的识别性能,能够为战场情报获取提供有效的技术支撑。 展开更多
关键词 军事目标识别 通道-空间并行注意力机制 特征融合 损失函数
下载PDF
基于卷积网络注意力机制的人脸表情识别
16
作者 郭昕刚 程超 沈紫琪 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第8期2319-2328,共10页
针对表情识别时出现参数量大和识别能力弱等问题,提出一种基于卷积网络人脸表情识别方法。引入改进型残差模块,在减少参数量的同时增强对表情区域的关注;利用通道-空间注意力机制对网络提取的表情区域实现不同维度和位置上的权重分配,... 针对表情识别时出现参数量大和识别能力弱等问题,提出一种基于卷积网络人脸表情识别方法。引入改进型残差模块,在减少参数量的同时增强对表情区域的关注;利用通道-空间注意力机制对网络提取的表情区域实现不同维度和位置上的权重分配,专注于表情关键点中细微差别特征信息;利用细节模块进一步提取深度特征信息。为得到更高准确度,引入联合损失函数延长类外距离,缩短类内距离以提高表情识别准确度。本文将此网络运用到数据集FER2013、CK+中,实验结果表明:本算法平均识别率分别为63.91%、97.98%,参数量为11.34 M。与VGG网络、残差网络等对比,该模型不仅提高了识别率,还减少了冗余参数量。 展开更多
关键词 面部表情识别 残差模块 通道-空间注意力机制 细化模块
原文传递
基于CSLS-CycleGAN的侧扫声纳水下目标图像样本扩增法 被引量:1
17
作者 汤寓麟 王黎明 +3 位作者 余德荧 李厚朴 刘敏 张卫东 《系统工程与电子技术》 EI CSCD 北大核心 2024年第5期1514-1524,共11页
针对侧扫声纳水下目标图像稀缺,获取难度大、成本高,导致基于深度学习的目标检测模型性能差的问题,结合光学域类目标数据集丰富的现状,提出一种基于通道和空间注意力(channel and spatial attention,CSA)模块、最小二乘生成对抗生成网络... 针对侧扫声纳水下目标图像稀缺,获取难度大、成本高,导致基于深度学习的目标检测模型性能差的问题,结合光学域类目标数据集丰富的现状,提出一种基于通道和空间注意力(channel and spatial attention,CSA)模块、最小二乘生成对抗生成网络(least squares generative adversarial networks,LSGAN)及循环对抗生成网络(cycle generative adversarial networks,CycleGAN)的侧扫声纳水下目标图像样本扩增方法。首先,受CycleGAN的启发,设计基于循环一致性的单循环网络结构,保证模型的训练效率。然后,在生成器中融合CSA模块,减少信息弥散的同时增强跨纬度交互。最后,设计了基于LSGAN的损失函数,提高生成图像质量的同时提高训练稳定性。在船舶光学域数据集与侧扫声纳沉船数据集上进行实验,所提方法实现了光学-侧扫声纳样本间信息的高效、稳健转换以及大量侧扫声纳目标样本的扩增。同时,基于本文生成样本训练后的检测模型进行了水下目标检测,结果表明,使用本文样本扩增数据训练后的模型在少样本沉船目标检测的平均准确率达到了84.71%,证明了所提方法实现了零样本和小样本水下强代表性目标样本的高质量扩增,并为高性能水下目标检测模型构建提供了一种新的途径。 展开更多
关键词 样本扩增 侧扫声纳 循环生成对抗网络 通道空间注意力模块 最小二乘生成对抗网络
下载PDF
融合多尺度特征信息的图像雨滴去除方法
18
作者 崔明义 冯治国 +1 位作者 代建琴 赵雪峰 《微电子学与计算机》 2024年第4期74-84,共11页
针对雨滴使雨天图像背景特征模糊失真的问题,提出一种融合多尺度特征信息的图像雨滴去除算法。首先,搭建了一个编码-解码神经网络来学习图像特征映射,考虑到雨滴的物理形状特征,采用雨滴形状驱动注意力模块来捕捉雨滴位置。然后,引入空... 针对雨滴使雨天图像背景特征模糊失真的问题,提出一种融合多尺度特征信息的图像雨滴去除算法。首先,搭建了一个编码-解码神经网络来学习图像特征映射,考虑到雨滴的物理形状特征,采用雨滴形状驱动注意力模块来捕捉雨滴位置。然后,引入空间与通道协调注意力机制,加强图像重要空间和通道特征权重。接着,利用空洞卷积、非对称卷积和金字塔结构设计了新型空洞空间卷积池化金字塔模块,以捕获图像的多尺度特征。最后,在同尺度的编码-解码卷积层间加入跳跃连接,将特征信息馈送到网络深处,达到去除图像中雨滴的目的。实验结果表明:本文算法在公开数据集Qian上的PSNR达到30.75,SSIM达到0.9257;在自制雨天数据集上也可以有效去除图像中的雨滴。 展开更多
关键词 图像去雨 深度学习 空洞卷积 空间通道协调注意力机制 编码-解码结构
下载PDF
基于空间-通道注意力的改进SSD目标检测算法 被引量:13
19
作者 许光宇 尹孟园 《光电子.激光》 CAS CSCD 北大核心 2021年第9期970-978,共9页
目标检测的任务是精确识别,有效定位出图像中目标物体,且预定义其类别。针对主流目标检测(single shot multibox detector,SSD)算法存在小目标检测准确度不高,检测效率较低等问题,提出一种基于空间-通道注意力机制的SSD目标检测算法(spa... 目标检测的任务是精确识别,有效定位出图像中目标物体,且预定义其类别。针对主流目标检测(single shot multibox detector,SSD)算法存在小目标检测准确度不高,检测效率较低等问题,提出一种基于空间-通道注意力机制的SSD目标检测算法(spatial and channel single shot multibox detector,SC_SSD)。通过在SSD深层网络引入空间-通道注意力机制增强高层特征图语义信息,提高算法获取目标物体的细节与位置信息的能力,从而降低漏检率及误检率,并提高小目标物体检测的准确度。此外,利用MobileNetV2中的深度可分离卷积对SSD主干网络(visual geometry group network,VGG-16)进行剪枝处理,降低参数量,从而减少训练与检测的时间。在PASCAL VOC2007数据集上进行实验,本文算法检测的精确度与速度分别为78.9%与59.4 Fps,比SSD算法提升了3.2%与26.7 Fps,满足实时性需求。算法也优于相比较的其他算法,是一种有效可行的目标检测算法。 展开更多
关键词 目标检测 single shot multibox detector(SSD)算法 空间-通道注意力机制 小目标
原文传递
Attention Mechanism-Based Method for Intrusion Target Recognition in Railway
20
作者 SHI Jiang BAI Dingyuan +2 位作者 GUO Baoqing WANG Yao RUAN Tao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期541-554,共14页
The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conven... The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s. 展开更多
关键词 foreign object detection railway protection edge computing spatial attention module channel attention module
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部