为了更加精确地分割出甲状腺结节,本文提出了一种改进的全卷积神经网络(Fully convolutional network,FCN)分割模型。相较于FCN,本文方法加入了空洞空间卷积池化金字塔(Atrousspatialpyramidpooling,ASPP)模块与多层特征传递模块(Featur...为了更加精确地分割出甲状腺结节,本文提出了一种改进的全卷积神经网络(Fully convolutional network,FCN)分割模型。相较于FCN,本文方法加入了空洞空间卷积池化金字塔(Atrousspatialpyramidpooling,ASPP)模块与多层特征传递模块(Featuretransfer,FT),并采用LinkNet模型中Decoder模块进行上采样,VGG16主干网络实现特征提取下采样。实验采用来自斯坦福AIMI(Artificial intelligence in medicine and imaging)共享数据集的17413张超声甲状腺结节图像分别用于训练、验证和测试。实验结果表明,相比于其他多种分割模型,本文模型在平均交并比(mean Intersection over union,mIoU),Dice相似系数,F1分数3个分割指标上分别达到了79.7%,87.6%和98.42%,实现了更好的分割效果,有效地提升了甲状腺结节的分割精确度。展开更多
膝关节半月板分割的精确度对于半月板撕裂等级的判别和诊断具有重大意义,为了提高分割精度,本文提出一种基于多尺度网络(Multiscale-Net)的膝关节半月板分割方法。该方法结合视觉几何组网16(Visual Geometry Group Network16,VGG16)的...膝关节半月板分割的精确度对于半月板撕裂等级的判别和诊断具有重大意义,为了提高分割精度,本文提出一种基于多尺度网络(Multiscale-Net)的膝关节半月板分割方法。该方法结合视觉几何组网16(Visual Geometry Group Network16,VGG16)的卷积层和池化层以及U-Net网络的解码器部分,将编码器和解码器相连的3×3卷积层替换为改进的空间卷积池化金字塔(Atrous Spatial Pyramid Pooling,ASPP)模块。最后在安徽医科大学第一附属医院提供的临床病人的真实数据集上进行验证并与U-Net、引入ASPP模块的U-Net等模型进行对比。实验结果表明本文方法的交并比(Intersection over Union,IoU)和DSC相似系数(Dice Similarity Coefficient,DSC)分别达到91.25%和94.89%。展开更多
文摘为了更加精确地分割出甲状腺结节,本文提出了一种改进的全卷积神经网络(Fully convolutional network,FCN)分割模型。相较于FCN,本文方法加入了空洞空间卷积池化金字塔(Atrousspatialpyramidpooling,ASPP)模块与多层特征传递模块(Featuretransfer,FT),并采用LinkNet模型中Decoder模块进行上采样,VGG16主干网络实现特征提取下采样。实验采用来自斯坦福AIMI(Artificial intelligence in medicine and imaging)共享数据集的17413张超声甲状腺结节图像分别用于训练、验证和测试。实验结果表明,相比于其他多种分割模型,本文模型在平均交并比(mean Intersection over union,mIoU),Dice相似系数,F1分数3个分割指标上分别达到了79.7%,87.6%和98.42%,实现了更好的分割效果,有效地提升了甲状腺结节的分割精确度。
基金supported by the International Research Center of Big Data for Sustainable Development Goals [grant number CBAS2022GSP01]the National Natural Science Foundation of China [grant numbers 42276203 and 42030406]+1 种基金the Natural Science Foundation of Shandong Province [grant number ZR2021MD001]the Laoshan Laboratory [grant number LSKJ202204302].