期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于YOLOv4算法改进的室外场景目标检测
1
作者 鲁鑫鑫 张荣芬 +1 位作者 刘宇红 李宽 《计算机仿真》 北大核心 2023年第12期261-268,共8页
室外场景对于人们的日常出行至关重要。为了提高室外目标检测算法的实时性和准确性,采用YOLOv4算法作为基础算法,对其进行改进。首先将Focus模块插入到CSPDarknet主干网络中,其次在YOLOv4算法网络结构中使用空间锯齿空洞卷积结构加强模... 室外场景对于人们的日常出行至关重要。为了提高室外目标检测算法的实时性和准确性,采用YOLOv4算法作为基础算法,对其进行改进。首先将Focus模块插入到CSPDarknet主干网络中,其次在YOLOv4算法网络结构中使用空间锯齿空洞卷积结构加强模型对图像特征细节的提取,以替代原网络中的空间金字塔池化结构;对颈部进行了网络裁剪,能够达到减小网络权重的目的;最后为加强模型对于深、浅层特征的融合能力,采用双向特征金字塔结构,从而提高模型在浅层预测方面及深层定位方面的能力。实验表明,在文中构建的室外场景数据集上,改进后的YOLOv4算法的mAP达到87.9%,模型大小也减少了30MB,相比原YOLOv4算法检测在检测精度提升的同时速度也有明显提高。 展开更多
关键词 室外场景 网络裁剪 空间锯齿空洞卷积 双向特征金字塔
下载PDF
改进YOLOv4算法的复杂视觉场景行人检测方法 被引量:17
2
作者 康帅 章坚武 +1 位作者 朱尊杰 童国锋 《电信科学》 2021年第8期46-56,共11页
复杂视觉场景下存在过暗或者过曝的光照、恶劣的天气、严重遮挡、行人尺寸差别大以及图像模糊等问题,大大增加了行人检测的难度。因此,针对复杂视觉场景下行人检测准确度低、漏检严重的问题,提出了改进的YOLOv4算法以增强复杂视觉场景... 复杂视觉场景下存在过暗或者过曝的光照、恶劣的天气、严重遮挡、行人尺寸差别大以及图像模糊等问题,大大增加了行人检测的难度。因此,针对复杂视觉场景下行人检测准确度低、漏检严重的问题,提出了改进的YOLOv4算法以增强复杂视觉场景下的行人检测效果。首先,构建复杂视觉场景下的行人数据集。然后,在主干网中加入混合空洞卷积,提高网络对行人特征的提取能力。最后,提出空间锯齿空洞卷积结构,代替空间金字塔池化结构,获取更多细节特征。实验表明,在本文构建的行人数据集上,改进后的YOLOv4算法的平均精度(average precision,AP)达到了90.08%,相比原YOLOv4算法提高了7.2%,对数平均漏检率(log-average miss rate,LAMR)降低了13.69%。 展开更多
关键词 复杂视觉场景 YOLOv4 混合空洞卷积 空间锯齿空洞卷积
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部