The machining accuracy of workpiece is influenced by its orientation deviation, which is caused by the fixture-workpiece error. Based on the spatial coordinate theory, the orientation deviation of workpiece is measure...The machining accuracy of workpiece is influenced by its orientation deviation, which is caused by the fixture-workpiece error. Based on the spatial coordinate theory, the orientation deviation of workpiece is measured by using an on-machine verification system, which can take into account the errors resulting from fixture manufacturing, installation and adjustment, location and clamping of workpiece. According to the least square method, the model of orientation deviation is built to determine the relationship between the theoretical and actual coordinate systems. The influence of orientation deviation on machining accuracy is quantified, and it is shown that the orientation deviation only affects the dimensional precision and position precision, rather than shape precision. In the experiment, the compensation processing of realtime errors was conducted, and the perpendicularity and inclination errors of the tetragonal part were reduced by 38.46% and 47.06%, respectively.展开更多
Rainfall induced landslides are a common threat to the communities living on dangerous hillslopes in Chittagong Metropolitan Area, Bangladesh. Extreme population pressure, indiscriminate hill cutting, increased precip...Rainfall induced landslides are a common threat to the communities living on dangerous hillslopes in Chittagong Metropolitan Area, Bangladesh. Extreme population pressure, indiscriminate hill cutting, increased precipitation events due to global warming and associated unplanned urbanization in the hills are exaggerating landslide events. The aim of this article is to prepare a scientifically accurate landslide susceptibility map by combining landslide initiation and runout maps. Land cover, slope, soil permeability, surface geology, precipitation, aspect, and distance to hill cut, road cut, drainage and stream network factor maps were selected by conditional independence test. The locations of 56 landslides were collected by field surveying. A weight of evidence(Wo E) method was applied to calculate the positive(presence of landslides) and negative(absence of landslides) factor weights. A combination of analytical hierarchical process(AHP) and fuzzymembership standardization(weighs from 0 to 1) was applied for performing a spatial multi-criteria evaluation. Expert opinion guided the decision rule for AHP. The Flow-R tool that allows modeling landslide runout from the initiation sources was applied. The flow direction was calculated using the modified Holmgren's algorithm. The AHP landslide initiation and runout susceptibility maps were used to prepare a combined landslide susceptibility map. The relative operating characteristic curve was used for model validation purpose. The accuracy of Wo E, AHP, and combined susceptibility map was calculated 96%, 97%, and 98%, respectively.展开更多
Assuring the quality of land-cover data is one of the major challenges for large- area mapping projects. Although the use of geospatial knowledge and ancillary data in improving land-cover classification has been stud...Assuring the quality of land-cover data is one of the major challenges for large- area mapping projects. Although the use of geospatial knowledge and ancillary data in improving land-cover classification has been studied since the early 1980 s, mature methods and efficient supporting tools are still lacking. This paper presents a geospatial knowledge-based verification and improvement approach for global land cover(GLC) mapping at 30-m resolution. A set of verification rules is derived from three types of land cover and its change knowledge(natural, cultural and temporal constraints). A group of web-based supporting tools is developed to facilitate the integration of and access to large amounts of ancillary data and to support online data manipulation and analysis as well as collaborative verification workflows. With this approach, two 30-m GLC datasets(Globe Land-2000 and Globe Land-2010) were verified and modified. The results indicate that the data quality of Globe Land30 has been largely improved.展开更多
In space weather forecasting, forecast verification is necessary so that the forecast quality can be assessed. This paper provides an example of how to choose and devise verification methods and techniques according t...In space weather forecasting, forecast verification is necessary so that the forecast quality can be assessed. This paper provides an example of how to choose and devise verification methods and techniques according to different space weather forecast products. Solar proton events(SPEs) are hazardous space weather events, and forecasting them is one of the major tasks of the Space Environment Prediction Center(SEPC) at the National Space Science Center of the Chinese Academy of Sciences. Through analyzing SPE occurrence characteristics, SPE forecast properties, and verification requirements at SEPC, verification methods for SPE probability forecasts are identified, and verification results obtained. Overall, SPE probability forecasts at SEPC exhibit good accuracy, reliability, and discrimination. Compared with climatology and persistence forecasts, the SPE forecasts are more accurate. However, the forecasts for SPE onset days are substantially underestimated and need to be considerably improved.展开更多
Geological disasters not only cause economic losses and ecological destruction, but also seriously threaten human survival. Selecting an appropriate method to evaluate susceptibility to geological disasters is an impo...Geological disasters not only cause economic losses and ecological destruction, but also seriously threaten human survival. Selecting an appropriate method to evaluate susceptibility to geological disasters is an important part of geological disaster research. The aims of this study are to explore the accuracy and reliability of multi-regression methods for geological disaster susceptibility evaluation, including Logistic Regression(LR), Spatial Autoregression(SAR), Geographical Weighted Regression(GWR), and Support Vector Regression(SVR), all of which have been widely discussed in the literature. In this study, we selected Yunnan Province of China as the research site and collected data on typical geological disaster events and the associated hazards that occurred within the study area to construct a corresponding index system for geological disaster assessment. Four methods were used to model and evaluate geological disaster susceptibility. The predictive capabilities of the methods were verified using the receiver operating characteristic(ROC) curve and the success rate curve. Lastly, spatial accuracy validation was introduced to improve the results of the evaluation, which was demonstrated by the spatial receiver operating characteristic(SROC) curve and the spatial success rate(SSR) curve. The results suggest that: 1) these methods are all valid with respect to the SROC and SSR curves, and the spatial accuracy validation method improved their modelling results and accuracy, such that the area under the curve(AUC) values of the ROC curves increased by about 3%–13% and the AUC of the success rate curve values increased by 15%–20%; 2) the evaluation accuracies of LR, SAR, GWR, and SVR were 0.8325, 0.8393, 0.8370 and 0.8539, which proved the four statistical regression methods all have good evaluation capability for geological disaster susceptibility evaluation and the evaluation results of SVR are more reasonable than others; 3) according to the evaluation results of SVR, the central-southern Yunnan Province are the highest sus-ceptibility areas and the lowest susceptibility is mainly located in the central and northern parts of the study area.展开更多
基金Supported by National Natural Science Foundation of China (No.50975200)
文摘The machining accuracy of workpiece is influenced by its orientation deviation, which is caused by the fixture-workpiece error. Based on the spatial coordinate theory, the orientation deviation of workpiece is measured by using an on-machine verification system, which can take into account the errors resulting from fixture manufacturing, installation and adjustment, location and clamping of workpiece. According to the least square method, the model of orientation deviation is built to determine the relationship between the theoretical and actual coordinate systems. The influence of orientation deviation on machining accuracy is quantified, and it is shown that the orientation deviation only affects the dimensional precision and position precision, rather than shape precision. In the experiment, the compensation processing of realtime errors was conducted, and the perpendicularity and inclination errors of the tetragonal part were reduced by 38.46% and 47.06%, respectively.
基金funded by the Center for Spatial Information Science and Systems at George Mason University, USABayes Ahmed is a Commonwealth Scholar funded by the UK govt
文摘Rainfall induced landslides are a common threat to the communities living on dangerous hillslopes in Chittagong Metropolitan Area, Bangladesh. Extreme population pressure, indiscriminate hill cutting, increased precipitation events due to global warming and associated unplanned urbanization in the hills are exaggerating landslide events. The aim of this article is to prepare a scientifically accurate landslide susceptibility map by combining landslide initiation and runout maps. Land cover, slope, soil permeability, surface geology, precipitation, aspect, and distance to hill cut, road cut, drainage and stream network factor maps were selected by conditional independence test. The locations of 56 landslides were collected by field surveying. A weight of evidence(Wo E) method was applied to calculate the positive(presence of landslides) and negative(absence of landslides) factor weights. A combination of analytical hierarchical process(AHP) and fuzzymembership standardization(weighs from 0 to 1) was applied for performing a spatial multi-criteria evaluation. Expert opinion guided the decision rule for AHP. The Flow-R tool that allows modeling landslide runout from the initiation sources was applied. The flow direction was calculated using the modified Holmgren's algorithm. The AHP landslide initiation and runout susceptibility maps were used to prepare a combined landslide susceptibility map. The relative operating characteristic curve was used for model validation purpose. The accuracy of Wo E, AHP, and combined susceptibility map was calculated 96%, 97%, and 98%, respectively.
基金funded by the National Natural Science Foundation of China (Grant No. 41231172)the Special Fund for Surveying, Mapping and Geoinformation Scientific Research in the Public Welfare (Grant No. 201512028)National High-Tech R&D Program of China (Grant No. 2013AA122802)
文摘Assuring the quality of land-cover data is one of the major challenges for large- area mapping projects. Although the use of geospatial knowledge and ancillary data in improving land-cover classification has been studied since the early 1980 s, mature methods and efficient supporting tools are still lacking. This paper presents a geospatial knowledge-based verification and improvement approach for global land cover(GLC) mapping at 30-m resolution. A set of verification rules is derived from three types of land cover and its change knowledge(natural, cultural and temporal constraints). A group of web-based supporting tools is developed to facilitate the integration of and access to large amounts of ancillary data and to support online data manipulation and analysis as well as collaborative verification workflows. With this approach, two 30-m GLC datasets(Globe Land-2000 and Globe Land-2010) were verified and modified. The results indicate that the data quality of Globe Land30 has been largely improved.
基金supported by the National Basic Program of China (Grant No. 2012CB825600)
文摘In space weather forecasting, forecast verification is necessary so that the forecast quality can be assessed. This paper provides an example of how to choose and devise verification methods and techniques according to different space weather forecast products. Solar proton events(SPEs) are hazardous space weather events, and forecasting them is one of the major tasks of the Space Environment Prediction Center(SEPC) at the National Space Science Center of the Chinese Academy of Sciences. Through analyzing SPE occurrence characteristics, SPE forecast properties, and verification requirements at SEPC, verification methods for SPE probability forecasts are identified, and verification results obtained. Overall, SPE probability forecasts at SEPC exhibit good accuracy, reliability, and discrimination. Compared with climatology and persistence forecasts, the SPE forecasts are more accurate. However, the forecasts for SPE onset days are substantially underestimated and need to be considerably improved.
基金National Natural Science Foundation of China,No.41571077,No.41171318The Fundamental Research Funds for the Central Universities
文摘Geological disasters not only cause economic losses and ecological destruction, but also seriously threaten human survival. Selecting an appropriate method to evaluate susceptibility to geological disasters is an important part of geological disaster research. The aims of this study are to explore the accuracy and reliability of multi-regression methods for geological disaster susceptibility evaluation, including Logistic Regression(LR), Spatial Autoregression(SAR), Geographical Weighted Regression(GWR), and Support Vector Regression(SVR), all of which have been widely discussed in the literature. In this study, we selected Yunnan Province of China as the research site and collected data on typical geological disaster events and the associated hazards that occurred within the study area to construct a corresponding index system for geological disaster assessment. Four methods were used to model and evaluate geological disaster susceptibility. The predictive capabilities of the methods were verified using the receiver operating characteristic(ROC) curve and the success rate curve. Lastly, spatial accuracy validation was introduced to improve the results of the evaluation, which was demonstrated by the spatial receiver operating characteristic(SROC) curve and the spatial success rate(SSR) curve. The results suggest that: 1) these methods are all valid with respect to the SROC and SSR curves, and the spatial accuracy validation method improved their modelling results and accuracy, such that the area under the curve(AUC) values of the ROC curves increased by about 3%–13% and the AUC of the success rate curve values increased by 15%–20%; 2) the evaluation accuracies of LR, SAR, GWR, and SVR were 0.8325, 0.8393, 0.8370 and 0.8539, which proved the four statistical regression methods all have good evaluation capability for geological disaster susceptibility evaluation and the evaluation results of SVR are more reasonable than others; 3) according to the evaluation results of SVR, the central-southern Yunnan Province are the highest sus-ceptibility areas and the lowest susceptibility is mainly located in the central and northern parts of the study area.