In recent decades,materials science has experienced rapid development and posed increasingly high requirements for the characterizations of structures,properties,and performances.Herein,we report on our recent establi...In recent decades,materials science has experienced rapid development and posed increasingly high requirements for the characterizations of structures,properties,and performances.Herein,we report on our recent establishment of a multi-domain(energy,space,time)highresolution platform for integrated spectroscopy and microscopy characterizations,offering an unprecedented way to analyze materials in terms of spectral(energy)and spatial mapping as well as temporal evolution.We present several proof-of-principle results collected on this platform,including in-situ Raman imaging(high-resolution Raman,polarization Raman,low-wavenumber Raman),time-resolved photoluminescence imaging,and photoelectrical performance imaging.It can be envisioned that our newly established platform would be very powerful and effective in the multi-domain high-resolution characterizations of various materials of photoelectrochemical importance in the near future.展开更多
The absorption effect of actual subsurface media can weaken wavefield energy, decrease the dominating frequency, and further lead to reduced resolution. In migration, some actions can be taken to compensate for the ab...The absorption effect of actual subsurface media can weaken wavefield energy, decrease the dominating frequency, and further lead to reduced resolution. In migration, some actions can be taken to compensate for the absorption effect and enhance the resolution. In this paper, we derive a one-way wave equation with an attenuation term based on the time- space domain high angle one-way wave equation. A complicated geological model is then designed and synthetic shot gathers are simulated with acoustic wave equations without and with an absorbing term. The derived one-way wave equation is applied to the migration of the synthetic gathers without and with attenuation compensation for the simulated shot gathers. Three migration profiles are obtained. The first and second profiles are from the shot gathers without and with attenuation using the migration method without compensation, the third one is from the shot gathers with attenuation using the migration method with compensation. The first and third profiles are almost the same, and the second profile is different from the others below the absorptive layers. The amplitudes of the interfaces below the absorptive layers are weak because of their absorption. This method is also applied to field data. It is concluded from the migration examples that the migration method discussed in this paper is feasible.展开更多
Qingdao waters,including both the semi-enclosed Jiaozhou Bay(JB) and the adjacent water out of JB(OJB),have been the areas that are most frequently affected by harmful algal blooms(HABs) in the western Yellow Sea(west...Qingdao waters,including both the semi-enclosed Jiaozhou Bay(JB) and the adjacent water out of JB(OJB),have been the areas that are most frequently affected by harmful algal blooms(HABs) in the western Yellow Sea(west of 124°E).In this research,HAB occurrences in Qingdao waters from 1990 to 2009 were investigated using spatial tools in geographic information system(GIS) and are discussed in terms of their connection to temporal variation.Additionally,the effects of each HAB occurrence were further evaluated using a simple model.The calculated results were then visualized using a GIS software to indicate the effects of HABs in Qingdao waters during the entire period.As a result,the OJB was proven to be responsible for the frequent HAB occurrences in Qingdao waters after 2000,although JB was traditionally believed to be the principle source of HAB occurrences in Qingdao waters.In addition,increasing nitrogen and N/P structure imbalance were essential for increasing HAB occurrences in Qingdao waters throughout the entire period,especially for the recent HAB occurrences in the OJB.The results of this research would improve the current understanding on HAB occurrences in Qingdao waters,which would benefit HAB monitoring and the implementation of a control strategy in China as well.展开更多
Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods...Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods due to their short time scale. To address this issue of daily snowline and snow cover observations, a ground- based EOS 7D camera and four infrared digital hunting video cameras (LTL5210A) were installed around the Hulugou river basin (HRB) in the Qilian Mountains along northeastern margin of the Tibetan Plateau (38°15′54″N, 99°52′53″E) in September 2011. Pictures taken with the EOS 7D camera were georeferenced and the data from four LIL521oA cameras and snow depth sensors were used to assist snow cover estimation. The results showed that the time-lapse photography can be very useful and precise for monitoring snowline and snow cover in mountainous regions. The snowline and snow cover evolution at this basin can be precisely captured at daily scale. In HRB snow cover is mainly established after October, and the maximum snow cover appeared during February and March. The consistent rise of the snowline and decrease in snow cover appeared after middle part of March. This melt process is strongly associated with air temperature increase.展开更多
Motivated by the recent work that the periodicity of a black hole is responsible for the area spectrum,we exclusively utilize the period of motion of an outgoing wave,which is shown to be related to the vibrational fr...Motivated by the recent work that the periodicity of a black hole is responsible for the area spectrum,we exclusively utilize the period of motion of an outgoing wave,which is shown to be related to the vibrational frequency of the perturbed black hole,to study area spectra of a non-rotating BTZ black hole and a rotating BTZ black hole.It is found that the area spectra and entropy spectra for both space times are equally spaced.In addition,we find that though the entropy spectra of the 3-dimensional BTZ black holes take the same form as those of the 4-dimensional black holes,the area spectra depend on the dimension of space times.Our result confirms that the entropy spectrum of a black hole is more fundamental than the area spectrum.展开更多
基金supported by the National Key Research and Development Program of China(No.2016YFA0200602,No.2017YFA0303500,and No.2018YFA0208702)the National Natural Science Foundation of China(No.21573211,No.21633007,No.21803067,and No.91950207)+1 种基金the Anhui Initiative in Quantum Information Technologies(AHY090200)the USTC-NSRL Joint Funds(UN2018LHJJ).
文摘In recent decades,materials science has experienced rapid development and posed increasingly high requirements for the characterizations of structures,properties,and performances.Herein,we report on our recent establishment of a multi-domain(energy,space,time)highresolution platform for integrated spectroscopy and microscopy characterizations,offering an unprecedented way to analyze materials in terms of spectral(energy)and spatial mapping as well as temporal evolution.We present several proof-of-principle results collected on this platform,including in-situ Raman imaging(high-resolution Raman,polarization Raman,low-wavenumber Raman),time-resolved photoluminescence imaging,and photoelectrical performance imaging.It can be envisioned that our newly established platform would be very powerful and effective in the multi-domain high-resolution characterizations of various materials of photoelectrochemical importance in the near future.
基金supported in part by the National Natural Science Foundation of China(No.40974069,41174119)the Research of Novel Method and Technology of Geophysical Prospecting,CNPC(No.2011A-3602)the National Major Science and Technology Program(No.2011ZX05010,2011ZX05024)
文摘The absorption effect of actual subsurface media can weaken wavefield energy, decrease the dominating frequency, and further lead to reduced resolution. In migration, some actions can be taken to compensate for the absorption effect and enhance the resolution. In this paper, we derive a one-way wave equation with an attenuation term based on the time- space domain high angle one-way wave equation. A complicated geological model is then designed and synthetic shot gathers are simulated with acoustic wave equations without and with an absorbing term. The derived one-way wave equation is applied to the migration of the synthetic gathers without and with attenuation compensation for the simulated shot gathers. Three migration profiles are obtained. The first and second profiles are from the shot gathers without and with attenuation using the migration method without compensation, the third one is from the shot gathers with attenuation using the migration method with compensation. The first and third profiles are almost the same, and the second profile is different from the others below the absorptive layers. The amplitudes of the interfaces below the absorptive layers are weak because of their absorption. This method is also applied to field data. It is concluded from the migration examples that the migration method discussed in this paper is feasible.
基金Supported by the National Natural Science Foundation of China(NSFC)-Shandong Joint Fund for Marine Science Research Centers(No.U1406403)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020302)+1 种基金the National Natural Science Foundation of China for Young Scholars(No.41506135)the National Nature Science Foundation of China for Creative Group Research(No.41121064)
文摘Qingdao waters,including both the semi-enclosed Jiaozhou Bay(JB) and the adjacent water out of JB(OJB),have been the areas that are most frequently affected by harmful algal blooms(HABs) in the western Yellow Sea(west of 124°E).In this research,HAB occurrences in Qingdao waters from 1990 to 2009 were investigated using spatial tools in geographic information system(GIS) and are discussed in terms of their connection to temporal variation.Additionally,the effects of each HAB occurrence were further evaluated using a simple model.The calculated results were then visualized using a GIS software to indicate the effects of HABs in Qingdao waters during the entire period.As a result,the OJB was proven to be responsible for the frequent HAB occurrences in Qingdao waters after 2000,although JB was traditionally believed to be the principle source of HAB occurrences in Qingdao waters.In addition,increasing nitrogen and N/P structure imbalance were essential for increasing HAB occurrences in Qingdao waters throughout the entire period,especially for the recent HAB occurrences in the OJB.The results of this research would improve the current understanding on HAB occurrences in Qingdao waters,which would benefit HAB monitoring and the implementation of a control strategy in China as well.
基金supported by the National Natural Sciences Foundation of China (Grant Nos. 41401078, 91025011, 41222001)National Basic Research Program of China (2013CBA01806)
文摘Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods due to their short time scale. To address this issue of daily snowline and snow cover observations, a ground- based EOS 7D camera and four infrared digital hunting video cameras (LTL5210A) were installed around the Hulugou river basin (HRB) in the Qilian Mountains along northeastern margin of the Tibetan Plateau (38°15′54″N, 99°52′53″E) in September 2011. Pictures taken with the EOS 7D camera were georeferenced and the data from four LIL521oA cameras and snow depth sensors were used to assist snow cover estimation. The results showed that the time-lapse photography can be very useful and precise for monitoring snowline and snow cover in mountainous regions. The snowline and snow cover evolution at this basin can be precisely captured at daily scale. In HRB snow cover is mainly established after October, and the maximum snow cover appeared during February and March. The consistent rise of the snowline and decrease in snow cover appeared after middle part of March. This melt process is strongly associated with air temperature increase.
基金supported by the National Natural Science Foundation of China (Grant Nos.10773002,10875012 and 11175019)the Team Research Program of Hubei University for Nationalities (Grant No.MY2011T006)Beijing Postdoctoral Research Foundation (Grant No.71006015201201)
文摘Motivated by the recent work that the periodicity of a black hole is responsible for the area spectrum,we exclusively utilize the period of motion of an outgoing wave,which is shown to be related to the vibrational frequency of the perturbed black hole,to study area spectra of a non-rotating BTZ black hole and a rotating BTZ black hole.It is found that the area spectra and entropy spectra for both space times are equally spaced.In addition,we find that though the entropy spectra of the 3-dimensional BTZ black holes take the same form as those of the 4-dimensional black holes,the area spectra depend on the dimension of space times.Our result confirms that the entropy spectrum of a black hole is more fundamental than the area spectrum.