In this paper, an efficient model of palmprint identification is presented based on subspace density estimation using Gaussian Mixture Model (GMM). While a few training samples are available for each person, we use in...In this paper, an efficient model of palmprint identification is presented based on subspace density estimation using Gaussian Mixture Model (GMM). While a few training samples are available for each person, we use intrapersonal palmprint deformations to train the global GMM instead of modeling GMMs for every class. To reduce the dimension of such variations while preserving density function of sample space, Principle Component Analysis (PCA) is used to find the principle differences and form the Intrapersonal Deformation Subspace (IDS). After training GMM using Expectation Maximization (EM) algorithm in IDS, a maximum likelihood strategy is carried out to identify a person. Experimental results demonstrate the advantage of our method compared with traditional PCA method and single Gaussian strategy.展开更多
文摘In this paper, an efficient model of palmprint identification is presented based on subspace density estimation using Gaussian Mixture Model (GMM). While a few training samples are available for each person, we use intrapersonal palmprint deformations to train the global GMM instead of modeling GMMs for every class. To reduce the dimension of such variations while preserving density function of sample space, Principle Component Analysis (PCA) is used to find the principle differences and form the Intrapersonal Deformation Subspace (IDS). After training GMM using Expectation Maximization (EM) algorithm in IDS, a maximum likelihood strategy is carried out to identify a person. Experimental results demonstrate the advantage of our method compared with traditional PCA method and single Gaussian strategy.