Regarding the complexity and inconsistency of results in existing evaluation methods of mine cooling system, this paper clarifies the advantages, disadvantages and application of various mine cooling sys- tems through...Regarding the complexity and inconsistency of results in existing evaluation methods of mine cooling system, this paper clarifies the advantages, disadvantages and application of various mine cooling sys- tems through principle analysis, and divides all the cooling systems into air-cooling, ice-cooling and water-cooling according to the transportation of cold energy. On this basis, the paper proposes a simple and efficient evaluation method for mine cooling system. The first index of this method is the air temper- ature at point C which is 15 m away from the return wind corner at working face. A cooling system will be judged ineligible if the air temperature at point C is above 30 ℃ during operation, because in this case, the combustible gases in coal will sharply overflow, inducing gas incidents. Based on the preliminary judg- ment of the first index, another two evaluation indexes are proposed based on the cooling ability and dehumidification of an airflow volume of 1000 m3/min at point C to evaluate the investment and opera- tion cost of mine cooling system. This evaluation method has already been successfully applied in the cooling system design of Zhangshuanglou coal mine.展开更多
A simplified model for analysis of heat and mass transfer between air stream and flowing down water film in counter-flow plate heat exchanger which serves as an indirect evaporative cooler is theoretically analyzed in...A simplified model for analysis of heat and mass transfer between air stream and flowing down water film in counter-flow plate heat exchanger which serves as an indirect evaporative cooler is theoretically analyzed in this paper. Indirect evaporative cooler is used for sensible cooling of air which then is used for air conditioning purposes. Mathematical model was developed allowing determining heat transfer surface, outlet air temperature and specific humidity of the air being cooled. To make the model simpler some simplifications have been incorporated. The model has high level of correctness and can be used to calculate and design different types of evaporative heat exchangers. Analysis of results of calculations by the help of the developed model prove that the surface of heat exchanger depends on the thickness of water film layer by the regularity of direct proportionality. Moreover, increasing of the water film thickness brings to the decreasing of the efficiency of evaporative type heat exchanger. The model can be used for correct calculation and design of an evaporative cooling air conditioning systems.展开更多
This paper presents the simulation models of the plate-fin, air-to-water (or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying coils in the HVAC (Heating, Ventilation and Air-Condition...This paper presents the simulation models of the plate-fin, air-to-water (or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying coils in the HVAC (Heating, Ventilation and Air-Conditioning) systems. The thermal models are used to calculate the heat exchange between distributing air and coil pipes and outlet temperatures of air and heat or chilled fluid. The aerodynamic models are used to account for the pressure drop of the air crossing the coil tubes. They can also be used to optimize the structures of such coils. The models are based on principal laws of heat and mass conservation and fluid mechanics. They are transparent and easy to use. In our work, a coil is considered as an assembly of numbers of basic elements in which all the state variables are unique. Therefore we can conveniently simulate the coils with different structures and different geometric parameters. Two modular programs TRNSYS (Transient System Simulation) and ESACAP are utilized as supporting softwares which make the programming and simulation greatly simplified. The coil elements and a real coil were simulated. The results were compared with the data offered by the manufacturer (company SOFICA) and also with those obtained using critical methods such as NTU method, etc. and good agreement is attained.展开更多
A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow.The model predicts the optimal separation distance between th...A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow.The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances,and for dilute mist conditions.Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio,and reach a limit for a critical loading.For these dilute spray conditions,complete evaporation of the droplets takes place.Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate.The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.展开更多
In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed i...In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed in this paper, which is based on high-efficiency heat exchanger network and chemical packing separation technology. The operating temperature range of LNG cold energy is widened from 133K-203K to l13K-283K by high- efficiency heat exchanger network and air separation pressure is declined from 0.5MPa to about 0.35MPa due to packing separation technology, thereby greatly improve the energy efficiency. Both the traditional and novel air separation processes are simulated with air handling capacity of 20t'h-1. Comparing with the traditional process, the LNG consumption is reduced by 44.2%, power consumption decrease is 211.5 kWh per hour, which means the annual benefit will be up to 1.218 million CNY. And the exergy efficiency is also improved by 42.5%.展开更多
As one of the most important developments in air cooling technology for hot parts of the aero-engine, film cool- ing technology has been widely used. Film cooling hole structure exists mainly in areas that have high t...As one of the most important developments in air cooling technology for hot parts of the aero-engine, film cool- ing technology has been widely used. Film cooling hole structure exists mainly in areas that have high temperature, uneven cooling effectiveness issues when in actual use. The first stage turbine vanes of the aero-engine consume the largest portion of cooling air, thereby the research on reducing the amount of cooling air has the greatest potential. A new stopped slot film cooling vane with a high cooling effectiveness and a high cooling uniformity was researched initially. Through numerical methods, the affecting factors of the cooling effectiveness of a vane with the stepped slot film cooling structure were researched. This paper focuses on the cooling effectiveness and the pressure loss in different blowing ratio conditions, then the most reasonable and scientific structure parameter can be obtained by analyzing the results. The results show that 1.0 mm is the optimum slot width and 10.0 is the most reasonable blowing ratio. Under this condition, the vane achieved the best cooling result and the highest cooling effectiveness, and also retained a low pressure loss.展开更多
基金supported by the key project of National Natural Science Foundation ‘‘Deep Heat Governance and Utilization’’ (Nos.51134005 and 41402273)the Doctoral Fund of Ministry of Education (No. 20130023110021)
文摘Regarding the complexity and inconsistency of results in existing evaluation methods of mine cooling system, this paper clarifies the advantages, disadvantages and application of various mine cooling sys- tems through principle analysis, and divides all the cooling systems into air-cooling, ice-cooling and water-cooling according to the transportation of cold energy. On this basis, the paper proposes a simple and efficient evaluation method for mine cooling system. The first index of this method is the air temper- ature at point C which is 15 m away from the return wind corner at working face. A cooling system will be judged ineligible if the air temperature at point C is above 30 ℃ during operation, because in this case, the combustible gases in coal will sharply overflow, inducing gas incidents. Based on the preliminary judg- ment of the first index, another two evaluation indexes are proposed based on the cooling ability and dehumidification of an airflow volume of 1000 m3/min at point C to evaluate the investment and opera- tion cost of mine cooling system. This evaluation method has already been successfully applied in the cooling system design of Zhangshuanglou coal mine.
文摘A simplified model for analysis of heat and mass transfer between air stream and flowing down water film in counter-flow plate heat exchanger which serves as an indirect evaporative cooler is theoretically analyzed in this paper. Indirect evaporative cooler is used for sensible cooling of air which then is used for air conditioning purposes. Mathematical model was developed allowing determining heat transfer surface, outlet air temperature and specific humidity of the air being cooled. To make the model simpler some simplifications have been incorporated. The model has high level of correctness and can be used to calculate and design different types of evaporative heat exchangers. Analysis of results of calculations by the help of the developed model prove that the surface of heat exchanger depends on the thickness of water film layer by the regularity of direct proportionality. Moreover, increasing of the water film thickness brings to the decreasing of the efficiency of evaporative type heat exchanger. The model can be used for correct calculation and design of an evaporative cooling air conditioning systems.
文摘This paper presents the simulation models of the plate-fin, air-to-water (or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying coils in the HVAC (Heating, Ventilation and Air-Conditioning) systems. The thermal models are used to calculate the heat exchange between distributing air and coil pipes and outlet temperatures of air and heat or chilled fluid. The aerodynamic models are used to account for the pressure drop of the air crossing the coil tubes. They can also be used to optimize the structures of such coils. The models are based on principal laws of heat and mass conservation and fluid mechanics. They are transparent and easy to use. In our work, a coil is considered as an assembly of numbers of basic elements in which all the state variables are unique. Therefore we can conveniently simulate the coils with different structures and different geometric parameters. Two modular programs TRNSYS (Transient System Simulation) and ESACAP are utilized as supporting softwares which make the programming and simulation greatly simplified. The coil elements and a real coil were simulated. The results were compared with the data offered by the manufacturer (company SOFICA) and also with those obtained using critical methods such as NTU method, etc. and good agreement is attained.
文摘A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow.The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances,and for dilute mist conditions.Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio,and reach a limit for a critical loading.For these dilute spray conditions,complete evaporation of the droplets takes place.Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate.The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.
文摘In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed in this paper, which is based on high-efficiency heat exchanger network and chemical packing separation technology. The operating temperature range of LNG cold energy is widened from 133K-203K to l13K-283K by high- efficiency heat exchanger network and air separation pressure is declined from 0.5MPa to about 0.35MPa due to packing separation technology, thereby greatly improve the energy efficiency. Both the traditional and novel air separation processes are simulated with air handling capacity of 20t'h-1. Comparing with the traditional process, the LNG consumption is reduced by 44.2%, power consumption decrease is 211.5 kWh per hour, which means the annual benefit will be up to 1.218 million CNY. And the exergy efficiency is also improved by 42.5%.
基金supported by funds form National natural science foundation of China(Grant No.50976008)
文摘As one of the most important developments in air cooling technology for hot parts of the aero-engine, film cool- ing technology has been widely used. Film cooling hole structure exists mainly in areas that have high temperature, uneven cooling effectiveness issues when in actual use. The first stage turbine vanes of the aero-engine consume the largest portion of cooling air, thereby the research on reducing the amount of cooling air has the greatest potential. A new stopped slot film cooling vane with a high cooling effectiveness and a high cooling uniformity was researched initially. Through numerical methods, the affecting factors of the cooling effectiveness of a vane with the stepped slot film cooling structure were researched. This paper focuses on the cooling effectiveness and the pressure loss in different blowing ratio conditions, then the most reasonable and scientific structure parameter can be obtained by analyzing the results. The results show that 1.0 mm is the optimum slot width and 10.0 is the most reasonable blowing ratio. Under this condition, the vane achieved the best cooling result and the highest cooling effectiveness, and also retained a low pressure loss.