期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
联合局部二值模式的高光谱影像空-谱分类方法 被引量:7
1
作者 职露 余旭初 付琼莹 《测绘科学技术学报》 CSCD 北大核心 2018年第1期65-69,76,共6页
为充分利用高光谱影像"图谱合一"的特性,提出了一种联合局部二值模式的高光谱影像空-谱分类方法。该方法通过局部二值模式从降维影像中提取空间纹理特征,以线性加权求和核为多核组合方式,与原始光谱特征结合构造混合核极限学... 为充分利用高光谱影像"图谱合一"的特性,提出了一种联合局部二值模式的高光谱影像空-谱分类方法。该方法通过局部二值模式从降维影像中提取空间纹理特征,以线性加权求和核为多核组合方式,与原始光谱特征结合构造混合核极限学习机模型,实现影像的地物分类。为了验证该方法的有效性,利用Indiana和Pavia U两组高光谱影像数据进行实验,总体分类精度分别达到99.23%和94.95%。结果表明该方法分类效果优于纯光谱分类、纯局部二值模式空间分类、GLCM空-谱分类以及3Gabor空-谱分类方法,有效地改善了高光谱影像分类结果,获得更加平滑的分类结果图。 展开更多
关键词 高光影像 间纹理特征 局部二值模式 混合核极限学习机 空-谱分类
下载PDF
多层级二值模式的高光谱影像空-谱分类 被引量:10
2
作者 职露 余旭初 +1 位作者 邹滨 刘冰 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2019年第11期1659-1666,共8页
利用高光谱遥感影像的空间纹理特征,可以提高高光谱遥感影像的分类精度。提出了一种多层级二值模式的高光谱影像空-谱联合分类方法。该方法将高光谱影像转化为局部二值模式特征图像获取像元微观特征,基于特征图像生成多层级特征向量获... 利用高光谱遥感影像的空间纹理特征,可以提高高光谱遥感影像的分类精度。提出了一种多层级二值模式的高光谱影像空-谱联合分类方法。该方法将高光谱影像转化为局部二值模式特征图像获取像元微观特征,基于特征图像生成多层级特征向量获取像元宏观特征。为验证该方法的有效性,选取PaviaU、Salinas和Chikusei高光谱影像数据,利用核极限学习机分类器,分别针对光谱、局部二值模式、多层级二值模式等特征开展实验。结果表明,多层级二值模式空-谱分类总体精度分别达到97.31%、98.96%和97.85%,明显优于传统光谱、3Gabor空-谱等分类方法。该方法可为高光谱影像分类提供更加有效的类别判定特征,有助于提高影像分类精度并获取更加平滑的分类结果图。 展开更多
关键词 高光遥感影像 空-谱分类 多层级二值模式 核极限学习机
原文传递
Hyperspectral image classification based on spatial and spectral features and sparse representation 被引量:4
3
作者 杨京辉 王立国 钱晋希 《Applied Geophysics》 SCIE CSCD 2014年第4期489-499,511,共12页
To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is ba... To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is based on the Gabor spatial texture features and nonparametric weighted spectral features, and the sparse representation classification method(Gabor–NWSF and SRC), abbreviated GNWSF–SRC. The proposed(GNWSF–SRC) method first combines the Gabor spatial features and nonparametric weighted spectral features to describe the hyperspectral image, and then applies the sparse representation method. Finally, the classification is obtained by analyzing the reconstruction error. We use the proposed method to process two typical hyperspectral data sets with different percentages of training samples. Theoretical analysis and simulation demonstrate that the proposed method improves the classification accuracy and Kappa coefficient compared with traditional classification methods and achieves better classification performance. 展开更多
关键词 HYPERSPECTRAL CLASSIFICATION sparse representation spatial features spectral features
下载PDF
基于超像素分割的形态学标准差属性剖面特征自动生成 被引量:1
4
作者 陈军丽 黄睿 张国鹏 《工业控制计算机》 2018年第3期23-24,共2页
针对形态学属性剖面(Morphological Attribute Profile,AP)参数取值难以获取问题,提出一种基于超像素分割的自动确定标准差属性剖面参数的方法。首先,利用主成份分析(Principal Component Analysis,PCA)对高光谱影像进行降维,并对降维... 针对形态学属性剖面(Morphological Attribute Profile,AP)参数取值难以获取问题,提出一种基于超像素分割的自动确定标准差属性剖面参数的方法。首先,利用主成份分析(Principal Component Analysis,PCA)对高光谱影像进行降维,并对降维影像进行超像素分割,形成具有空间相邻和光谱相似特征的同质区域块。接着,基于分割结果进行训练样本的扩充:在一个区域块中,若只存在一类训练样本,则该区域中像素被均被标记为同类;若该区域块中存在不同类别的训练样本或不含训练样本,则不进行训练样本扩充。最后,基于扩充后训练样本的统计信息确定标准差AP的参数阈值。实验结果表明,所提算法优于多种自动确定属性剖面参数的方法。 展开更多
关键词 属性剖面(AP) 超像素分割 -结合分类 高光影像
下载PDF
Achievement of Interference Alignment in General Underlay Cognitive Radio Networks: Scenario Classification and Adaptive Spectrum Sharing 被引量:1
5
作者 Mei Rong 《China Communications》 SCIE CSCD 2018年第6期98-108,共11页
Interference alignment(IA) is suitable for cognitive radio networks(CRNs).However, in IA spectrum sharing(SS) process of general underlay CRNs, transmit power of cognitive radio transmitters usually should be reduced ... Interference alignment(IA) is suitable for cognitive radio networks(CRNs).However, in IA spectrum sharing(SS) process of general underlay CRNs, transmit power of cognitive radio transmitters usually should be reduced to satisfy interference constraint of primary user(PU), which may lead to low signalto-noise-ratio at cognitive radio receivers(CRRs). Consequently, sum rate of cognitive users(CUs) may fall short of the theoretical maximum through IA. To solve this problem,we propose an adaptive IA SS method for general distributed multi-user multi-antenna CRNs. The relationship between interference and noise power at each CRR is analyzed according to channel state information, interference requirement of PU, and power budget of CUs. Based on the analysis, scenarios of the CRN are classified into 4 cases, and corresponding IA SS algorithms are properly designed. Transmit power adjustment, CU access control and adjusted spatial projection are used to realize IA among CUs. Compared with existing methods, the proposed method is more general because of breaking the restriction that CUs can only transmit on the idle sub-channels. Moreover, in comparison to other five IA SS methods applicable in general CRN, the proposed method leads to improved achievable sum rate of CUs while guarantees transmission of PU. 展开更多
关键词 cognitive radio networks spectrum sharing interference alignment scenario classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部