期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
面向高光谱显微图像血细胞分类的空-谱可分离卷积神经网络
被引量:
4
1
作者
时旭
李远
黄鸿
《光学精密工程》
EI
CAS
CSCD
北大核心
2022年第8期960-969,共10页
深度学习已经在高光谱血细胞图像分类中获得广泛应用。然而,传统深度学习模型需要大量标记数据作为样本,忽略了高光谱图像“图谱合一”的性质,不能充分挖掘高光谱图像内蕴信息,且存在参数多、复杂度高问题。针对上述问题,提出了空-谱可...
深度学习已经在高光谱血细胞图像分类中获得广泛应用。然而,传统深度学习模型需要大量标记数据作为样本,忽略了高光谱图像“图谱合一”的性质,不能充分挖掘高光谱图像内蕴信息,且存在参数多、复杂度高问题。针对上述问题,提出了空-谱可分离卷积神经网络(S3CNN),在降低模型复杂度的同时有效提升高光谱血细胞图像分类性能。根据高光谱血细胞图像分布的空间一致性,S3CNN模型首先通过空-谱联合距离(SSCD)得到训练集中各像素点的空-谱近邻,并对这些近邻点赋予与相应中心像素点相同的标签,进行样本扩充,然后在网络模型中采用一组深度卷积和点卷积代替经典卷积,优化了模型复杂度,实现血细胞分类。在Bloodcells1-3和Bloodcells2-2两个不同场景下的高光谱血细胞数据集上的实验结果显示,本文所提算法的总体分类精度分别达到87.32%、89.02%。与其他传统血细胞分类算法相比,本文算法能有效提升高光谱血细胞图像的分类性能。在训练时间上,所采用的可分离卷积模型比经典卷积模型减少27%。实验结果表明,所提网络框架不仅能有效提升高光谱血细胞分类性能,且可减少模型训练时间。
展开更多
关键词
高光
谱
图像
血细胞分类
卷积神经网络
空-谱联合距离
可分离卷积
下载PDF
职称材料
题名
面向高光谱显微图像血细胞分类的空-谱可分离卷积神经网络
被引量:
4
1
作者
时旭
李远
黄鸿
机构
重庆大学光电技术与系统教育部重点实验室
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2022年第8期960-969,共10页
基金
中央高校基本科研业务费项目(No.2019CDYGYB008,No.2020CDCGTM002)
国家自然科学基金项目(No.42071302)
+1 种基金
重庆市基础研究与前沿探索项目(No.cstc2018jcyjAX0093)
重庆市留学人员回国创业创新支持计划项目(No.cx2019144)。
文摘
深度学习已经在高光谱血细胞图像分类中获得广泛应用。然而,传统深度学习模型需要大量标记数据作为样本,忽略了高光谱图像“图谱合一”的性质,不能充分挖掘高光谱图像内蕴信息,且存在参数多、复杂度高问题。针对上述问题,提出了空-谱可分离卷积神经网络(S3CNN),在降低模型复杂度的同时有效提升高光谱血细胞图像分类性能。根据高光谱血细胞图像分布的空间一致性,S3CNN模型首先通过空-谱联合距离(SSCD)得到训练集中各像素点的空-谱近邻,并对这些近邻点赋予与相应中心像素点相同的标签,进行样本扩充,然后在网络模型中采用一组深度卷积和点卷积代替经典卷积,优化了模型复杂度,实现血细胞分类。在Bloodcells1-3和Bloodcells2-2两个不同场景下的高光谱血细胞数据集上的实验结果显示,本文所提算法的总体分类精度分别达到87.32%、89.02%。与其他传统血细胞分类算法相比,本文算法能有效提升高光谱血细胞图像的分类性能。在训练时间上,所采用的可分离卷积模型比经典卷积模型减少27%。实验结果表明,所提网络框架不仅能有效提升高光谱血细胞分类性能,且可减少模型训练时间。
关键词
高光
谱
图像
血细胞分类
卷积神经网络
空-谱联合距离
可分离卷积
Keywords
hyperspectral image
bloodcell classification
convolutional neural networks
spatial
-
spectral combined distance
separable convolution
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
面向高光谱显微图像血细胞分类的空-谱可分离卷积神经网络
时旭
李远
黄鸿
《光学精密工程》
EI
CAS
CSCD
北大核心
2022
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部