期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向高光谱显微图像血细胞分类的空-谱可分离卷积神经网络 被引量:4
1
作者 时旭 李远 黄鸿 《光学精密工程》 EI CAS CSCD 北大核心 2022年第8期960-969,共10页
深度学习已经在高光谱血细胞图像分类中获得广泛应用。然而,传统深度学习模型需要大量标记数据作为样本,忽略了高光谱图像“图谱合一”的性质,不能充分挖掘高光谱图像内蕴信息,且存在参数多、复杂度高问题。针对上述问题,提出了空-谱可... 深度学习已经在高光谱血细胞图像分类中获得广泛应用。然而,传统深度学习模型需要大量标记数据作为样本,忽略了高光谱图像“图谱合一”的性质,不能充分挖掘高光谱图像内蕴信息,且存在参数多、复杂度高问题。针对上述问题,提出了空-谱可分离卷积神经网络(S3CNN),在降低模型复杂度的同时有效提升高光谱血细胞图像分类性能。根据高光谱血细胞图像分布的空间一致性,S3CNN模型首先通过空-谱联合距离(SSCD)得到训练集中各像素点的空-谱近邻,并对这些近邻点赋予与相应中心像素点相同的标签,进行样本扩充,然后在网络模型中采用一组深度卷积和点卷积代替经典卷积,优化了模型复杂度,实现血细胞分类。在Bloodcells1-3和Bloodcells2-2两个不同场景下的高光谱血细胞数据集上的实验结果显示,本文所提算法的总体分类精度分别达到87.32%、89.02%。与其他传统血细胞分类算法相比,本文算法能有效提升高光谱血细胞图像的分类性能。在训练时间上,所采用的可分离卷积模型比经典卷积模型减少27%。实验结果表明,所提网络框架不仅能有效提升高光谱血细胞分类性能,且可减少模型训练时间。 展开更多
关键词 高光图像 血细胞分类 卷积神经网络 空-谱联合距离 可分离卷积
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部