Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads wh...Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank.Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions.In this study,a numerical model based on OpenF OAM(Open Source Field Operation and Manipulation),an open source computed fluid dynamic code,is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate.The numerical results of the free surface elevations are first verified using experimental data,and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples.The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies.This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.展开更多
Polymer insulating through-silicon-vias (TSVs) is an attractive approach for high-performance 3D integration systems. To further demonstrate the polymer insulating TSVs, this paper investigates the thermal stability...Polymer insulating through-silicon-vias (TSVs) is an attractive approach for high-performance 3D integration systems. To further demonstrate the polymer insulating TSVs, this paper investigates the thermal stability by measuring the leakage current under bias-temperature condition, studies the thermal stress characteristics with Finite Element Analysis (FEA), and tries to improve the thermal mechanical reliability of high-density TSVs array by optimizing the geometry parameters of pitch, liner and redistribution layer (RDL). The electrical measurements show the polymer insulating TSVs can maintain good insulation capability (less than 2x 10TM A) under challenging bias-temperature conditions of 20 V and 200~C, despite the leakage degra- dation observation. The FEA results show that the thermal stress is significantly reduced at the sidewall, but highly concen- trates at the surface, which is the potential location of mechanical failure. And, the analysis results indicate that the polymer insulating TSVs (diameter of 10 μm, depth of 50 μm) array with a pitch of 20 μm, liner thickness of 1 μm and RDL radius of 9 μm has an optimized thermal-mechanical reliability for application.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51490675,51322903,and 51279224)
文摘Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank.Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions.In this study,a numerical model based on OpenF OAM(Open Source Field Operation and Manipulation),an open source computed fluid dynamic code,is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate.The numerical results of the free surface elevations are first verified using experimental data,and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples.The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies.This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.
文摘Polymer insulating through-silicon-vias (TSVs) is an attractive approach for high-performance 3D integration systems. To further demonstrate the polymer insulating TSVs, this paper investigates the thermal stability by measuring the leakage current under bias-temperature condition, studies the thermal stress characteristics with Finite Element Analysis (FEA), and tries to improve the thermal mechanical reliability of high-density TSVs array by optimizing the geometry parameters of pitch, liner and redistribution layer (RDL). The electrical measurements show the polymer insulating TSVs can maintain good insulation capability (less than 2x 10TM A) under challenging bias-temperature conditions of 20 V and 200~C, despite the leakage degra- dation observation. The FEA results show that the thermal stress is significantly reduced at the sidewall, but highly concen- trates at the surface, which is the potential location of mechanical failure. And, the analysis results indicate that the polymer insulating TSVs (diameter of 10 μm, depth of 50 μm) array with a pitch of 20 μm, liner thickness of 1 μm and RDL radius of 9 μm has an optimized thermal-mechanical reliability for application.