CO2 capture,especially under low-pressure range,is of significance to maintain long-duration human operation in confined spaces and decrease the CO2 corrosion and freezing effect for the liquefaction of natural gas.He...CO2 capture,especially under low-pressure range,is of significance to maintain long-duration human operation in confined spaces and decrease the CO2 corrosion and freezing effect for the liquefaction of natural gas.Herein,we for the first time report a novel anion-functionalized ZU-16-Co(TIFSIX-3-Co,TIFSIX=hexafluorotitanate(TiF62−),3=pyrazine),which exhibits one-dimensional pore channels decorated by abundant F atoms,for efficient CO2 capture at a concentration around 400–10,000 ppm.Among its isostructural MFSIX-3(M=Si,Ti,Ge)family materials,ZU-16-Co with fine-tuned pore size of 3.62Åexhibits the highest CO2 uptake at 0.01 bar(10,000 ppm)and 1 bar(2.63 and 2.87 mmol g−,respectively).The high CO2 capture ability of ZU-16-Co originates from the fine-tuned pore dimensions with strong F⋯C=O host-guest interactions and relatively large pore volumes coming from its longer coordinated Ti-F-Co distance(3.9Å)in c direction.The excellent carbon trapping performance was further verified by dynamic breakthrough tests for CO2/N2(1/99 and 15/85)and CO2/CH4(50/50)mixtures.The adsorption and separation performances,resulting from the fine-tuned pore system with periodic arrays of exposed functionalities,demonstrate that ultramicroporous ZU-16-Co can be a promising adsorbent for low-concentration carbon capture.展开更多
基金the National Natural Science Foundation of China(21938011,U1862110,21890764 and21725603)the National Program for Support of Top-notch Young Professionals(H.X.)。
文摘CO2 capture,especially under low-pressure range,is of significance to maintain long-duration human operation in confined spaces and decrease the CO2 corrosion and freezing effect for the liquefaction of natural gas.Herein,we for the first time report a novel anion-functionalized ZU-16-Co(TIFSIX-3-Co,TIFSIX=hexafluorotitanate(TiF62−),3=pyrazine),which exhibits one-dimensional pore channels decorated by abundant F atoms,for efficient CO2 capture at a concentration around 400–10,000 ppm.Among its isostructural MFSIX-3(M=Si,Ti,Ge)family materials,ZU-16-Co with fine-tuned pore size of 3.62Åexhibits the highest CO2 uptake at 0.01 bar(10,000 ppm)and 1 bar(2.63 and 2.87 mmol g−,respectively).The high CO2 capture ability of ZU-16-Co originates from the fine-tuned pore dimensions with strong F⋯C=O host-guest interactions and relatively large pore volumes coming from its longer coordinated Ti-F-Co distance(3.9Å)in c direction.The excellent carbon trapping performance was further verified by dynamic breakthrough tests for CO2/N2(1/99 and 15/85)and CO2/CH4(50/50)mixtures.The adsorption and separation performances,resulting from the fine-tuned pore system with periodic arrays of exposed functionalities,demonstrate that ultramicroporous ZU-16-Co can be a promising adsorbent for low-concentration carbon capture.