Polymer insulating through-silicon-vias (TSVs) is an attractive approach for high-performance 3D integration systems. To further demonstrate the polymer insulating TSVs, this paper investigates the thermal stability...Polymer insulating through-silicon-vias (TSVs) is an attractive approach for high-performance 3D integration systems. To further demonstrate the polymer insulating TSVs, this paper investigates the thermal stability by measuring the leakage current under bias-temperature condition, studies the thermal stress characteristics with Finite Element Analysis (FEA), and tries to improve the thermal mechanical reliability of high-density TSVs array by optimizing the geometry parameters of pitch, liner and redistribution layer (RDL). The electrical measurements show the polymer insulating TSVs can maintain good insulation capability (less than 2x 10TM A) under challenging bias-temperature conditions of 20 V and 200~C, despite the leakage degra- dation observation. The FEA results show that the thermal stress is significantly reduced at the sidewall, but highly concen- trates at the surface, which is the potential location of mechanical failure. And, the analysis results indicate that the polymer insulating TSVs (diameter of 10 μm, depth of 50 μm) array with a pitch of 20 μm, liner thickness of 1 μm and RDL radius of 9 μm has an optimized thermal-mechanical reliability for application.展开更多
Penetration depth,spray dispersion angle,droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine.These processes will enhance air/fuel mixing ins...Penetration depth,spray dispersion angle,droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine.These processes will enhance air/fuel mixing inside the combustor.Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated.And experiments were conducted to a range of cross-flow velocities from 42~136 m/s.Air is injected with 0~300kPa,with air-assist pulsation frequency of 0~20Hz.Pulsation frequency was modulated by solenoid valve.Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics.High-speed CCD camera was used to obtain injected spray structure.Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration.Air-assist makes a very fine droplet which generated mist-like spray.Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field.The results show that pulsation frequency has an effect on penetration,transverse velocities and droplet sizes.The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.展开更多
文摘Polymer insulating through-silicon-vias (TSVs) is an attractive approach for high-performance 3D integration systems. To further demonstrate the polymer insulating TSVs, this paper investigates the thermal stability by measuring the leakage current under bias-temperature condition, studies the thermal stress characteristics with Finite Element Analysis (FEA), and tries to improve the thermal mechanical reliability of high-density TSVs array by optimizing the geometry parameters of pitch, liner and redistribution layer (RDL). The electrical measurements show the polymer insulating TSVs can maintain good insulation capability (less than 2x 10TM A) under challenging bias-temperature conditions of 20 V and 200~C, despite the leakage degra- dation observation. The FEA results show that the thermal stress is significantly reduced at the sidewall, but highly concen- trates at the surface, which is the potential location of mechanical failure. And, the analysis results indicate that the polymer insulating TSVs (diameter of 10 μm, depth of 50 μm) array with a pitch of 20 μm, liner thickness of 1 μm and RDL radius of 9 μm has an optimized thermal-mechanical reliability for application.
基金supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD,Basic Research Promotion Fund) (KRF-2007-D00084)
文摘Penetration depth,spray dispersion angle,droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine.These processes will enhance air/fuel mixing inside the combustor.Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated.And experiments were conducted to a range of cross-flow velocities from 42~136 m/s.Air is injected with 0~300kPa,with air-assist pulsation frequency of 0~20Hz.Pulsation frequency was modulated by solenoid valve.Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics.High-speed CCD camera was used to obtain injected spray structure.Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration.Air-assist makes a very fine droplet which generated mist-like spray.Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field.The results show that pulsation frequency has an effect on penetration,transverse velocities and droplet sizes.The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.