In order to verify whether any special gas component exists in outburst samples or not, coal samples from both outburst coal seams and non-outburst coal seams were collected. Some gases were extracted from the samples...In order to verify whether any special gas component exists in outburst samples or not, coal samples from both outburst coal seams and non-outburst coal seams were collected. Some gases were extracted from the samples and analyzed qualitatively and quantitatively on chromatogram-mass spectrograph. The qualitative analysis show that there is no special gases in coal seams. And the quantitative analysis indicates that the heavy hydrocarbon content in coal samples from outburst coal seams is apparently higher than that from non-outburst district ones, which reflects the damage of geological tectonic movement to coal body in history. Therefore, the heavy hydrocarbon content of coal sample can be used as an index to predict coal outburst.展开更多
The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so t...The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so that the data could be processed at different priority levels in C language. Two different data processing models, one with priority and the other without priority, were built based on queuing theory. Their theoretical formulas were determined via a M/M/I model in order to calculate average occupation time of each measuring point in an early-warning program. We validated the model with the gas early-warning system of the Huaibei Coalmine Group Corp. The results indicate that the average occupation time for gas data processing by using the queuing system model with priority is nearly 1/30 of that of the model without priority.展开更多
The prediction study on coal and gas outbursts is carried out by monitoring some indices which are sensitive to the initiation of coal and gas outbursts. The values and changing roles of the indices are the foundation...The prediction study on coal and gas outbursts is carried out by monitoring some indices which are sensitive to the initiation of coal and gas outbursts. The values and changing roles of the indices are the foundations of coal and gas outbursts prediction. But now, only the data of ere key monitoring station is used in the coal and gas outbursts prediction practice, and the other data are ignored. In order to overcome the human factor and make full use of the monitoring information, the technique of multi-sensor target tracking is proposed to deal with the microseismic informatiion. With the results of microseismic events, the activities of geological structure, fracure-depth of roof and floor, and the location of gas channel are obtained. These studies indicate that it is considerably possible to predict the coal and gas outbursts using microseismic monitoring with its inherent ability to remotely monitor the progressive failure caused by mining.展开更多
文摘In order to verify whether any special gas component exists in outburst samples or not, coal samples from both outburst coal seams and non-outburst coal seams were collected. Some gases were extracted from the samples and analyzed qualitatively and quantitatively on chromatogram-mass spectrograph. The qualitative analysis show that there is no special gases in coal seams. And the quantitative analysis indicates that the heavy hydrocarbon content in coal samples from outburst coal seams is apparently higher than that from non-outburst district ones, which reflects the damage of geological tectonic movement to coal body in history. Therefore, the heavy hydrocarbon content of coal sample can be used as an index to predict coal outburst.
基金Project 70533050 supported by the National Natural Science Foundation of China
文摘The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so that the data could be processed at different priority levels in C language. Two different data processing models, one with priority and the other without priority, were built based on queuing theory. Their theoretical formulas were determined via a M/M/I model in order to calculate average occupation time of each measuring point in an early-warning program. We validated the model with the gas early-warning system of the Huaibei Coalmine Group Corp. The results indicate that the average occupation time for gas data processing by using the queuing system model with priority is nearly 1/30 of that of the model without priority.
基金supported by National Basic Research Programof China(973Program,2010CB226805)Shandong Province Natural Science Fund(Z2008F01)Key Laboratory of Mine Disaster Prevention and Control of Education Ministry(MDPC0809,MDPC0811)
文摘The prediction study on coal and gas outbursts is carried out by monitoring some indices which are sensitive to the initiation of coal and gas outbursts. The values and changing roles of the indices are the foundations of coal and gas outbursts prediction. But now, only the data of ere key monitoring station is used in the coal and gas outbursts prediction practice, and the other data are ignored. In order to overcome the human factor and make full use of the monitoring information, the technique of multi-sensor target tracking is proposed to deal with the microseismic informatiion. With the results of microseismic events, the activities of geological structure, fracure-depth of roof and floor, and the location of gas channel are obtained. These studies indicate that it is considerably possible to predict the coal and gas outbursts using microseismic monitoring with its inherent ability to remotely monitor the progressive failure caused by mining.