AIM: To determine the distribution of viral genotypes for primary or acquired lamivudine resistance. METHODS: A total of 283 patients with chronic hepatitis B virus (HBV) infection (245 patients with chronic hepatitis...AIM: To determine the distribution of viral genotypes for primary or acquired lamivudine resistance. METHODS: A total of 283 patients with chronic hepatitis B virus (HBV) infection (245 patients with chronic hepatitis B and 38 inactive hepatitis B surface antigen carriers) were included in the study. The HBV geno-type was determined by using quantitative real-time polymerase chain reaction and sequence analysis, and tyrosine-methionine-aspartate-aspartate (YMDD) motif mutations were determined using the reverse transcriptase hybridization method. RESULTS: Lamivudine resistance was determined in a total of 25 (10.7%) chronic hepatitis B patients. Eight subjects (4%) had primary resistance to lamivudine, and 17 (53.1%) had secondary resistance to lamivudine. Genotype D, which was isolated from 267 of the patients with chronic HBV infection, was the dominant genotype in Turkey. CONCLUSION: Identification of YMDD motif mutations should have a positive impact on the selection of proper antiviral medication for patients, even for those who are nucleoside nave.展开更多
Influenza A(A/H_(x)N_(y))is a significant public health concern due to its high infectiousness and mortality.Neuraminidase,which interacts with sialic acid(SIA)in host cells,has become an essential target since its hi...Influenza A(A/H_(x)N_(y))is a significant public health concern due to its high infectiousness and mortality.Neuraminidase,which interacts with sialic acid(SIA)in host cells,has become an essential target since its highly conserved catalytic center structure,while resistance mutations have already generated.Here,a detailed investigation of the drug resistance mechanism caused by mutations was performed for subtype N9(A/H7N9).Molecular dynamics simulation and alanine-scanning-interaction-entropy method(ASIE)were used to explore the critical differences between N9 and Zanamivir(ZMR)before and after R294K mutation.The results showed that the mutation caused the hydrogen bond between Arg294 and ZMR to break,then the hydrogen bonding network was disrupted,leading to weakened binding ability and resistance.While in wild type(A/H7N9^(WT)),this hydrogen bond was initially stable.Meanwhile,N9 derived from A/H11N9 was obtained as an R292K mutation.Then the relative binding free energy of N9 with five inhibitors(SIA,DAN,ZMR,G28,and G39)was predicted,basically consistent with experimental values,indicating that the calculated results were reliable by ASIE.In addition,Arg292 and Tyr406 were hot spots in the A/H11N9^(WT)-drugs.However,Lys292 was not observed as a favorable contributing residue in A/H11N9^(R292K),which may promote resistance.In comparison,Tyr406 remained the hotspot feature when SIA,ZMR,and G28 binding to A/H11N9^(R292K).Combining the two groups,we speculate that the resistance was mainly caused by the disruption of the hydrogen bonding network and the transformation of hotspots.This study could guide novel drug delivery of drug-resistant mutations in the treatment of A/H_(x)N9.展开更多
Objective: To knock out the entire Luxs gene of Streptococcus mutans(S.mutans) UA159 strain via homologous recombination and construct a Luxs-deleted mutant strain of S. mutans. To study the difference between the aci...Objective: To knock out the entire Luxs gene of Streptococcus mutans(S.mutans) UA159 strain via homologous recombination and construct a Luxs-deleted mutant strain of S. mutans. To study the difference between the acid resistance of S. mutans Ingbritt C international standard strain and the acid resistance of LuxS mutant strain. Methods: Two DNA fragments locating in the upper and downstream of Luxs gene were amplified and a erythromycin resistance gene of PJT10 between them were engineered into PUC19 plasmid for constructing the recombination plasmid pUCluxKO. Electrotransformation of S.mutans cells with pUCluxKO-mutant resulted in isolation of erythromycin resistant S. mutans transformants, which was identified by polymerase chain reaction, V.harveyi BB170 luminescence bioassay and sequencing analysis. Solutions of S. mutans standard strain and LuxS mutant strain with same density were made and cultured at pH 3.5 to 7.0 BHI liquid for the same period.Terminal growth situation was compared.Firstly acidized in pH 5.5 BHI liquid,the two strains were cultured at pH 3.0 BHI liquid. The acid tolerance responses of the two strains were compared.Results:Restriction endonuclease analyses showed that pUCluxKO-mutant vector had been successfully recombined. The Luxs-deleted status of S.mutans mutants was confirmed by PCR with primers which were specific for the genes of Luxs and Erythromycin resistance. S.mutans mutant can not induce bioluminescence, indiating the mutant had been successfully recombined. After twenty generations of culture, the constructed Chinese S.mutans mutants were confirmed to be stable. Significant difference of aciduricity was observed between S.mutans standard strain and LuxS mutant strain.The acid resistance of standard strain was stronger than that of LuxS mutant strain.The two strains both displayed the capability of acid tolerance responses. Conclusion:The S.mutans gene allelic exchange plasmid is constructed correctively and a Luxs-negative mutants of S.mutans is constructed, which can help to further study the role of Luxs in the pathogenesis of S.mutans. LuxS mutant strain is more sensitive to acid inactivation,but the capability of acid tolerance responses exist still.展开更多
OBJECTIVE: To study the resistance mechanism of clinical isolates of Ureaplasma urealyticum resistant to fluoroquinolones. METHODS: Thirteen isolates of Ureaplasma urealyticum resistant to six fluoroquinolones were se...OBJECTIVE: To study the resistance mechanism of clinical isolates of Ureaplasma urealyticum resistant to fluoroquinolones. METHODS: Thirteen isolates of Ureaplasma urealyticum resistant to six fluoroquinolones were selected out of 184 clinical isolates and their QRDRs (quinolone resistance-determining region) gyrA, gyrB, parC and parE were amplified by PCR. Sequencing results were compared to those susceptible reference strains and a comparison of deduced amino acid sequences were performed. RESULTS: Sequence comparison revealed a C to A change at 87nt of gyrA QRDR leading to the substitution of Asp95 with glutamic acid and a C to T change at 50nt of parC QRDR leading to the substitution of Ser80 with leucine. CONCLUSION: These results suggest that a C to A change at 87nt of gyrA QRDR and a C to T change at 50nt of parC QRDR are associated with fluoroquinolone resistance of Ureaplasma urealyticum.展开更多
To study the transition dynamics of resistant-type human immunodeficiency virus 1 (HIV-1) in highly active antiretroviral therapy (HAART) and the affect of neutral mutation in the evolution of HIV-1, a mathematica...To study the transition dynamics of resistant-type human immunodeficiency virus 1 (HIV-1) in highly active antiretroviral therapy (HAART) and the affect of neutral mutation in the evolution of HIV-1, a mathematical model is proposed when mutation occurs mainly during reproduction. The derived results show that the resistant-type will certainly colonize in patients once mutation occurs. Furthermore, a neutral mutation is closely related to the colonized pattern of resistant-type HIV-1 quasispecies and there are some changes in the pattern of transmission dynamics when mutation occurs mainly during reproduction or in the absence of reproduction, which may lead to significant strategies for predicting or checking HIV-1 drug resistance in HAART.展开更多
Whether bacterial drug-resistance is drug-induced or results from rapid propagation of random spontaneous mutations in the flora prior to exposure, remains a long-term key issue concerned and debated in both genetics ...Whether bacterial drug-resistance is drug-induced or results from rapid propagation of random spontaneous mutations in the flora prior to exposure, remains a long-term key issue concerned and debated in both genetics and medicinal fields. In a pio-neering study, Luria and Delbruck exposed E. coli to T1 phage, to investigate whether the number of resistant colonies fol- lowed the Poisson distribution. They deduced that the development of resistant colonies is independent of phage presence. Similar results have since been obtained on solid medium containing antibacterial agents. Luria and Delbruck's conclusions were long considered a gold standard for analyzing drug resistance mutations. More recently, the concept of adaptive mutation has triggered controversy over this approach. Microbiological observation shows that, following exposure to drugs of various concentrations, drug-resistant cells emerge and multiply depending on the time course, and show a process function, incon-sistent with the definition of Poisson distribution (which assumes not only that resistance is independent of drug quantity but follows no specific time course). At the same time, since cells tend to aggregate after division rather than separating, colonies growing on drug plates arise from the multiplication of resistant bacteria cells of various initial population sizes. Thus, statisti-cal analysis based on equivalence of initial populations will yield erroneous results. In this paper, 310 data from the Lu- ria-DelbNck fluctuation experiment were reanalyzed from this perspective. In most cases, a high-end abnormal value, resulting from the non-synchronous variation of the two above-mentioned time variables, was observed. Therefore, the mean value cannot be regarded as an unbiased expectation estimate. The ratio between mean value and variance was similarly incompara-ble, because two different sampling methods were used. In fact, the Luria-Delbrtick data appear to follow an aggregated, rather than Poisson distribution. In stmnnary, the statistical analysis of Luria and Delbruck is insufficient to describe rules of resistant mutant development and multiplication. Correction of this historical misunderstanding will enable new insight into bacterial resistance mechanisms.展开更多
文摘AIM: To determine the distribution of viral genotypes for primary or acquired lamivudine resistance. METHODS: A total of 283 patients with chronic hepatitis B virus (HBV) infection (245 patients with chronic hepatitis B and 38 inactive hepatitis B surface antigen carriers) were included in the study. The HBV geno-type was determined by using quantitative real-time polymerase chain reaction and sequence analysis, and tyrosine-methionine-aspartate-aspartate (YMDD) motif mutations were determined using the reverse transcriptase hybridization method. RESULTS: Lamivudine resistance was determined in a total of 25 (10.7%) chronic hepatitis B patients. Eight subjects (4%) had primary resistance to lamivudine, and 17 (53.1%) had secondary resistance to lamivudine. Genotype D, which was isolated from 267 of the patients with chronic HBV infection, was the dominant genotype in Turkey. CONCLUSION: Identification of YMDD motif mutations should have a positive impact on the selection of proper antiviral medication for patients, even for those who are nucleoside nave.
基金supported by the National Natural Science Foundation of China(No.11774207)。
文摘Influenza A(A/H_(x)N_(y))is a significant public health concern due to its high infectiousness and mortality.Neuraminidase,which interacts with sialic acid(SIA)in host cells,has become an essential target since its highly conserved catalytic center structure,while resistance mutations have already generated.Here,a detailed investigation of the drug resistance mechanism caused by mutations was performed for subtype N9(A/H7N9).Molecular dynamics simulation and alanine-scanning-interaction-entropy method(ASIE)were used to explore the critical differences between N9 and Zanamivir(ZMR)before and after R294K mutation.The results showed that the mutation caused the hydrogen bond between Arg294 and ZMR to break,then the hydrogen bonding network was disrupted,leading to weakened binding ability and resistance.While in wild type(A/H7N9^(WT)),this hydrogen bond was initially stable.Meanwhile,N9 derived from A/H11N9 was obtained as an R292K mutation.Then the relative binding free energy of N9 with five inhibitors(SIA,DAN,ZMR,G28,and G39)was predicted,basically consistent with experimental values,indicating that the calculated results were reliable by ASIE.In addition,Arg292 and Tyr406 were hot spots in the A/H11N9^(WT)-drugs.However,Lys292 was not observed as a favorable contributing residue in A/H11N9^(R292K),which may promote resistance.In comparison,Tyr406 remained the hotspot feature when SIA,ZMR,and G28 binding to A/H11N9^(R292K).Combining the two groups,we speculate that the resistance was mainly caused by the disruption of the hydrogen bonding network and the transformation of hotspots.This study could guide novel drug delivery of drug-resistant mutations in the treatment of A/H_(x)N9.
文摘Objective: To knock out the entire Luxs gene of Streptococcus mutans(S.mutans) UA159 strain via homologous recombination and construct a Luxs-deleted mutant strain of S. mutans. To study the difference between the acid resistance of S. mutans Ingbritt C international standard strain and the acid resistance of LuxS mutant strain. Methods: Two DNA fragments locating in the upper and downstream of Luxs gene were amplified and a erythromycin resistance gene of PJT10 between them were engineered into PUC19 plasmid for constructing the recombination plasmid pUCluxKO. Electrotransformation of S.mutans cells with pUCluxKO-mutant resulted in isolation of erythromycin resistant S. mutans transformants, which was identified by polymerase chain reaction, V.harveyi BB170 luminescence bioassay and sequencing analysis. Solutions of S. mutans standard strain and LuxS mutant strain with same density were made and cultured at pH 3.5 to 7.0 BHI liquid for the same period.Terminal growth situation was compared.Firstly acidized in pH 5.5 BHI liquid,the two strains were cultured at pH 3.0 BHI liquid. The acid tolerance responses of the two strains were compared.Results:Restriction endonuclease analyses showed that pUCluxKO-mutant vector had been successfully recombined. The Luxs-deleted status of S.mutans mutants was confirmed by PCR with primers which were specific for the genes of Luxs and Erythromycin resistance. S.mutans mutant can not induce bioluminescence, indiating the mutant had been successfully recombined. After twenty generations of culture, the constructed Chinese S.mutans mutants were confirmed to be stable. Significant difference of aciduricity was observed between S.mutans standard strain and LuxS mutant strain.The acid resistance of standard strain was stronger than that of LuxS mutant strain.The two strains both displayed the capability of acid tolerance responses. Conclusion:The S.mutans gene allelic exchange plasmid is constructed correctively and a Luxs-negative mutants of S.mutans is constructed, which can help to further study the role of Luxs in the pathogenesis of S.mutans. LuxS mutant strain is more sensitive to acid inactivation,but the capability of acid tolerance responses exist still.
文摘OBJECTIVE: To study the resistance mechanism of clinical isolates of Ureaplasma urealyticum resistant to fluoroquinolones. METHODS: Thirteen isolates of Ureaplasma urealyticum resistant to six fluoroquinolones were selected out of 184 clinical isolates and their QRDRs (quinolone resistance-determining region) gyrA, gyrB, parC and parE were amplified by PCR. Sequencing results were compared to those susceptible reference strains and a comparison of deduced amino acid sequences were performed. RESULTS: Sequence comparison revealed a C to A change at 87nt of gyrA QRDR leading to the substitution of Asp95 with glutamic acid and a C to T change at 50nt of parC QRDR leading to the substitution of Ser80 with leucine. CONCLUSION: These results suggest that a C to A change at 87nt of gyrA QRDR and a C to T change at 50nt of parC QRDR are associated with fluoroquinolone resistance of Ureaplasma urealyticum.
基金Acknowledgments This work is supported by the National Natural Science Fund of P. R. China (No. 11271369) and the Natural Science Foundation Project of CQ CSTC (2010BB5020).
文摘To study the transition dynamics of resistant-type human immunodeficiency virus 1 (HIV-1) in highly active antiretroviral therapy (HAART) and the affect of neutral mutation in the evolution of HIV-1, a mathematical model is proposed when mutation occurs mainly during reproduction. The derived results show that the resistant-type will certainly colonize in patients once mutation occurs. Furthermore, a neutral mutation is closely related to the colonized pattern of resistant-type HIV-1 quasispecies and there are some changes in the pattern of transmission dynamics when mutation occurs mainly during reproduction or in the absence of reproduction, which may lead to significant strategies for predicting or checking HIV-1 drug resistance in HAART.
文摘Whether bacterial drug-resistance is drug-induced or results from rapid propagation of random spontaneous mutations in the flora prior to exposure, remains a long-term key issue concerned and debated in both genetics and medicinal fields. In a pio-neering study, Luria and Delbruck exposed E. coli to T1 phage, to investigate whether the number of resistant colonies fol- lowed the Poisson distribution. They deduced that the development of resistant colonies is independent of phage presence. Similar results have since been obtained on solid medium containing antibacterial agents. Luria and Delbruck's conclusions were long considered a gold standard for analyzing drug resistance mutations. More recently, the concept of adaptive mutation has triggered controversy over this approach. Microbiological observation shows that, following exposure to drugs of various concentrations, drug-resistant cells emerge and multiply depending on the time course, and show a process function, incon-sistent with the definition of Poisson distribution (which assumes not only that resistance is independent of drug quantity but follows no specific time course). At the same time, since cells tend to aggregate after division rather than separating, colonies growing on drug plates arise from the multiplication of resistant bacteria cells of various initial population sizes. Thus, statisti-cal analysis based on equivalence of initial populations will yield erroneous results. In this paper, 310 data from the Lu- ria-DelbNck fluctuation experiment were reanalyzed from this perspective. In most cases, a high-end abnormal value, resulting from the non-synchronous variation of the two above-mentioned time variables, was observed. Therefore, the mean value cannot be regarded as an unbiased expectation estimate. The ratio between mean value and variance was similarly incompara-ble, because two different sampling methods were used. In fact, the Luria-Delbrtick data appear to follow an aggregated, rather than Poisson distribution. In stmnnary, the statistical analysis of Luria and Delbruck is insufficient to describe rules of resistant mutant development and multiplication. Correction of this historical misunderstanding will enable new insight into bacterial resistance mechanisms.