To recognize the presence of the headstream of gushing water in coal mines, the SVM (Support Vector Ma- chine) was proposed to analyze the gushing water based on hydrogeochemical methods. First, the SVM model for head...To recognize the presence of the headstream of gushing water in coal mines, the SVM (Support Vector Ma- chine) was proposed to analyze the gushing water based on hydrogeochemical methods. First, the SVM model for head- stream analysis was trained on the water sample of available headstreams, and then we used this to predict the unknown samples, which were validated in practice by comparing the predicted results with the actual results. The experimental results show that the SVM is a feasible method to differentiate between two headstreams and the H-SVMs (Hierachical SVMs) is a preferable way to deal with the problem of multi-headstreams. Compared with other methods, the SVM is based on a strict mathematical theory with a simple structure and good generalization properties. As well, the support vector W in the decision function can describe the weights of the recognition factors of water samples, which is very important for the analysis of headstreams of gushing water in coal mines.展开更多
Isotopic and hydro-geochemical surveys were carried out to identify the source of mine inrushing water at the #73003 face in the Laohutai Mine. Based on the analysis of isotopes and hydro-chemical features of surface ...Isotopic and hydro-geochemical surveys were carried out to identify the source of mine inrushing water at the #73003 face in the Laohutai Mine. Based on the analysis of isotopes and hydro-chemical features of surface water, groundwater from different levels and the inrushing water, a special relationship between water at the #73003 face and cretaceous water has been found. The results show that the isotopic and hydro-chemical features of the inrushing water are completely different from those of other groundwater bodies, except for the cretaceous water. The isotopic and hydrochemical characteristics of cretaceous water are similar to the inrushing water of the #73003 face, which aided with obtaining the evidence for the possible source of the inrushing water at the #73003 face. The isotope calculations show that the inrushing water at the #73003 face is a mixture of cretaceous water and Quaternary water. Water from the cretaceous conglomerate is the main source, accounting for 67% of the inrushing water, while the Quaternary water accounts for 33%. The conclusion is also supported by a study of inrushing-water channels and an active fault near the inrushin^-water plot on the #73003 face.展开更多
基金Project 40401038 supported by the National Natural Science Foundation of China and 2003047 by the Top 100 Outstanding Doctoral Dissertation Foun-dation of China
文摘To recognize the presence of the headstream of gushing water in coal mines, the SVM (Support Vector Ma- chine) was proposed to analyze the gushing water based on hydrogeochemical methods. First, the SVM model for head- stream analysis was trained on the water sample of available headstreams, and then we used this to predict the unknown samples, which were validated in practice by comparing the predicted results with the actual results. The experimental results show that the SVM is a feasible method to differentiate between two headstreams and the H-SVMs (Hierachical SVMs) is a preferable way to deal with the problem of multi-headstreams. Compared with other methods, the SVM is based on a strict mathematical theory with a simple structure and good generalization properties. As well, the support vector W in the decision function can describe the weights of the recognition factors of water samples, which is very important for the analysis of headstreams of gushing water in coal mines.
基金financially supported by the Xi'an Branch of the Coal Research Institute
文摘Isotopic and hydro-geochemical surveys were carried out to identify the source of mine inrushing water at the #73003 face in the Laohutai Mine. Based on the analysis of isotopes and hydro-chemical features of surface water, groundwater from different levels and the inrushing water, a special relationship between water at the #73003 face and cretaceous water has been found. The results show that the isotopic and hydro-chemical features of the inrushing water are completely different from those of other groundwater bodies, except for the cretaceous water. The isotopic and hydrochemical characteristics of cretaceous water are similar to the inrushing water of the #73003 face, which aided with obtaining the evidence for the possible source of the inrushing water at the #73003 face. The isotope calculations show that the inrushing water at the #73003 face is a mixture of cretaceous water and Quaternary water. Water from the cretaceous conglomerate is the main source, accounting for 67% of the inrushing water, while the Quaternary water accounts for 33%. The conclusion is also supported by a study of inrushing-water channels and an active fault near the inrushin^-water plot on the #73003 face.