砷是一种自然环境中广泛存在的非金属元素[1]。人类在自然环境和工业活动中长期接触受砷污染的水、空气和食物而中毒,造成组织器官损伤、甚至癌变。此外,砷引起神经系统损害也受到人们越来越多的关注[2]。但目前砷引起神经损伤的具体机...砷是一种自然环境中广泛存在的非金属元素[1]。人类在自然环境和工业活动中长期接触受砷污染的水、空气和食物而中毒,造成组织器官损伤、甚至癌变。此外,砷引起神经系统损害也受到人们越来越多的关注[2]。但目前砷引起神经损伤的具体机制仍不是十分明确。Hippo信号通路是一条在进化上高度保守的激酶级联信号通路,主要控制器官大小、组织稳态和组织再生[3]。本课题组已经证实,NaAsO_(2)可通过激活Hippo信号通路,诱导PC12细胞凋亡。突触后致密蛋白95(post synaptic density protein,PSD95)、突触素蛋白(synaptophysin,SYN)作为神经突触功能相关蛋白,其表达和缺失在神经系统疾病中十分重要[4]。因此,本实验在前期研究的基础上探讨Hippo通路是否参与NaAsO_(2)对PC12细胞活性、形态以及PSD95、SYN神经突触相关蛋白表达的影响。展开更多
为了建立可对鳕鱼DNA进行特异性检测的PCR方法,从GenBank数据库下载太平洋鳕、大西洋鳕、狭鳕、绿青鳕4种鳕鱼的突触素样蛋白(pantophysin Pan I)基因序列,并用Bioedit 7.0软件对上述不同鳕鱼的该基因碱基序列进行比较。根据引物设计的...为了建立可对鳕鱼DNA进行特异性检测的PCR方法,从GenBank数据库下载太平洋鳕、大西洋鳕、狭鳕、绿青鳕4种鳕鱼的突触素样蛋白(pantophysin Pan I)基因序列,并用Bioedit 7.0软件对上述不同鳕鱼的该基因碱基序列进行比较。根据引物设计的基本原则,选择了鳕鱼与其他鱼类碱基序列上差异位点较多片段,设计出太平洋鳕、大西洋鳕、狭鳕、绿青鳕PCR特异性引物。用该引物分别对从7种鳕鱼和14种非鳕鱼鱼类的肌肉、脏器组织中提取的DNA进行PCR扩增。实验将所设计的引物通过两种引物组合、三种引物组合以及四种引物组合,进行多重PCR试验,结果表明,大西洋鳕、绿青鳕、太平洋鳕和狭鳕四种鳕鱼分别出现597、392、266、527 bp大小的清晰条带,4种引物之间相互不干扰,具有显著特异性。该方法具有较高灵敏度,低至4 ng/μL混合样品仍可检出。展开更多
Willed-movement training has been demonstrated to be a promising approach to increase motor per- formance and neural plasticity in ischemic rats. However, little is known regarding the molecular signals that are in- v...Willed-movement training has been demonstrated to be a promising approach to increase motor per- formance and neural plasticity in ischemic rats. However, little is known regarding the molecular signals that are in- volved in neural plasticity following willed-movement training. To investigate the potential signals related to neural plasticity following willed-movement training, littermate rats were randomly assigned into three groups: middle cerebral artery occlusion, environmental modification, and willed-movement training. The infarct volume was measured 18 d after occlusion of the right middle cerebral artery. Reverse transcription-polymerase chain reaction (PCR) and im- munofluorescence staining were used to detect the changes in the signal transducer and activator of transcription 3 (STAT3) mRNA and protein, respectively. A chromatin immunoprecipitation was used to investigate whether STAT3 bound to plasticity-related genes, such as brain-derived neurotrophic factor (BDNF), synaptophysin, and protein in- teracting with C kinase 1 (PICK1). In this study, we demonstrated that STAT3 mRNA and protein were markedly increased following 15-d willed-movement training in the ischemic hemispheres of the treated rats. STAT3 bound to BDNF, PICK1, and synaptophysin promoters in the neocortical cells of rats. These data suggest that the increased STAT3 levels after willed-movement training might play critical roles in the neural plasticity by directly regulating plasticity-related genes.展开更多
文摘砷是一种自然环境中广泛存在的非金属元素[1]。人类在自然环境和工业活动中长期接触受砷污染的水、空气和食物而中毒,造成组织器官损伤、甚至癌变。此外,砷引起神经系统损害也受到人们越来越多的关注[2]。但目前砷引起神经损伤的具体机制仍不是十分明确。Hippo信号通路是一条在进化上高度保守的激酶级联信号通路,主要控制器官大小、组织稳态和组织再生[3]。本课题组已经证实,NaAsO_(2)可通过激活Hippo信号通路,诱导PC12细胞凋亡。突触后致密蛋白95(post synaptic density protein,PSD95)、突触素蛋白(synaptophysin,SYN)作为神经突触功能相关蛋白,其表达和缺失在神经系统疾病中十分重要[4]。因此,本实验在前期研究的基础上探讨Hippo通路是否参与NaAsO_(2)对PC12细胞活性、形态以及PSD95、SYN神经突触相关蛋白表达的影响。
基金Project supported by the National Natural Science Foundation of China(Nos.30973167,81472160,and 81173595)the China Postdoctoral Science Foundation(Nos.2011M501301 and 2012T50711)the China-Japan Friendship Hospital Youth Science and Technology Excellence Project(No.2014-QNYC-A-04)
文摘Willed-movement training has been demonstrated to be a promising approach to increase motor per- formance and neural plasticity in ischemic rats. However, little is known regarding the molecular signals that are in- volved in neural plasticity following willed-movement training. To investigate the potential signals related to neural plasticity following willed-movement training, littermate rats were randomly assigned into three groups: middle cerebral artery occlusion, environmental modification, and willed-movement training. The infarct volume was measured 18 d after occlusion of the right middle cerebral artery. Reverse transcription-polymerase chain reaction (PCR) and im- munofluorescence staining were used to detect the changes in the signal transducer and activator of transcription 3 (STAT3) mRNA and protein, respectively. A chromatin immunoprecipitation was used to investigate whether STAT3 bound to plasticity-related genes, such as brain-derived neurotrophic factor (BDNF), synaptophysin, and protein in- teracting with C kinase 1 (PICK1). In this study, we demonstrated that STAT3 mRNA and protein were markedly increased following 15-d willed-movement training in the ischemic hemispheres of the treated rats. STAT3 bound to BDNF, PICK1, and synaptophysin promoters in the neocortical cells of rats. These data suggest that the increased STAT3 levels after willed-movement training might play critical roles in the neural plasticity by directly regulating plasticity-related genes.