To satisfy the multiple priority requests from buses that arrive at different phases within a small time window, a multi-phase bus signal priority (MPBSP) strategy is developed. The proximity principle is brought fo...To satisfy the multiple priority requests from buses that arrive at different phases within a small time window, a multi-phase bus signal priority (MPBSP) strategy is developed. The proximity principle is brought forward to settle the conflicts among multiple priority requests and arrange the optimal priority sequence. To avoid over saturation of the intersection, a conditional MPBSP algorithm that adopts early green and green extension strategies is developed to give priority to the bus with the highest priority level when green time that each phase runs makes its saturation degree not larger than 0. 95. Finally, the algorithm is tested in the VISSIM environment and compared with the normal signal timing algorithm. Sensitive analysis of the number of priority phases, bus demand, and volume to capacity ratios are conducted to quantify their impacts on the benefits of the MPBSP. Results show that the MPBSP strategy can effectively reduce bus delays, and with the increase in the number of priority phases, the reduction range of bus delays also increases.展开更多
P Kulasinghe and S Bettayeb showed that any multiply-twisted hypercube withfive or more dimensions is not vertex-transitive. This note shows that any multiply-twistedhypercube with four or less dimensions is vertex-tr...P Kulasinghe and S Bettayeb showed that any multiply-twisted hypercube withfive or more dimensions is not vertex-transitive. This note shows that any multiply-twistedhypercube with four or less dimensions is vertex-transitive, and that any multiply-twistedhypercube with three or larger dimensions is not edge-transitive.展开更多
Supercontinuum spectrum generation in a dispersion-flattened and decreasing fiber with two orthogonally polarized pulses was simulated and calculated. The research results indicated that the supercontinuum spectrum ge...Supercontinuum spectrum generation in a dispersion-flattened and decreasing fiber with two orthogonally polarized pulses was simulated and calculated. The research results indicated that the supercontinuum spectrum generated by two orthogonally polarized pulses is wider and flatter than that generated by single polarized pulse due to cross-phase modulation. The cross-phase modulation effect can enhance the supercontinuum spectrum generation. When the pump power of the input pulse is lower, the enhancement of supercontinuum spectrum generation by cross-phase modulation effect is more significant.展开更多
We examine the traffic lights regime to enable the fastest overall approach to a city for a specific case. The case involves a traffic light where one continues on the main road, into which additional cars are enterin...We examine the traffic lights regime to enable the fastest overall approach to a city for a specific case. The case involves a traffic light where one continues on the main road, into which additional cars are entering at the light. At this intersection an alternative route begins, which is longer but into which no additional cars are entering. To keep the total number of vehicles constant, we subtract on the main road far from the intersection, the same number of cars as were added at the intersection. In addition to checking different densities we check also the influence of changes in the number of cars which were added. We calculate the Fourier transform of the average on each traffic light cycles of the velocity on the main road and bypass. We obtained different results for different cases. All the cases can be written as 1/fa .展开更多
Organic electrosynthesis has been widely used as an environmentally conscious alternative to conventional methods for redox reactions because it utilizes electric current as a traceless redox agent instead of chemical...Organic electrosynthesis has been widely used as an environmentally conscious alternative to conventional methods for redox reactions because it utilizes electric current as a traceless redox agent instead of chemical redox agents. Indirect electrolysis employing a redox catalyst has received tremendous attention, since it provides various advantages compared to direct electrolysis. With indirect electrolysis, overpotential of electron transfer can be avoided, which is inherently milder, thus wide functional group tolerance can be achieved. Additionally, chemoselectivity, regioselectivity, and stereoselectivity can be tuned by the redox catalysts used in indirect electrolysis. Furthermore, electrode passivation can be avoided by preventing the formation of polymer films on the electrode surface. Common redox catalysts include N-oxyl radicals, hypervalent iodine species, halides, amines, benzoquinones(such as DDQ and tetrachlorobenzoquinone), and transition metals. In recent years, great progress has been made in the field of indirect organic electrosynthesis using transition metals as redox catalysts for reaction classes including C–H functionalization, radical cyclization, and cross-coupling of aryl halides-each owing to the diverse reactivity and accessible oxidation states of transition metals. Although various reviews of organic electrosynthesis are available, there is a lack of articles that focus on recent research progress in the area of indirect electrolysis using transition metals, which is the impetus for this review.展开更多
基金The National High Technology Research and Development Program of China(863 Program)(No.2011AA110304)the National Natural Science Foundation of China(No.50908100)Graduate Innovation Fund of Jilin University(No.20111044)
文摘To satisfy the multiple priority requests from buses that arrive at different phases within a small time window, a multi-phase bus signal priority (MPBSP) strategy is developed. The proximity principle is brought forward to settle the conflicts among multiple priority requests and arrange the optimal priority sequence. To avoid over saturation of the intersection, a conditional MPBSP algorithm that adopts early green and green extension strategies is developed to give priority to the bus with the highest priority level when green time that each phase runs makes its saturation degree not larger than 0. 95. Finally, the algorithm is tested in the VISSIM environment and compared with the normal signal timing algorithm. Sensitive analysis of the number of priority phases, bus demand, and volume to capacity ratios are conducted to quantify their impacts on the benefits of the MPBSP. Results show that the MPBSP strategy can effectively reduce bus delays, and with the increase in the number of priority phases, the reduction range of bus delays also increases.
基金Supported by ANSF(01046102)Supported by the NNSF of China(10271114)
文摘P Kulasinghe and S Bettayeb showed that any multiply-twisted hypercube withfive or more dimensions is not vertex-transitive. This note shows that any multiply-twistedhypercube with four or less dimensions is vertex-transitive, and that any multiply-twistedhypercube with three or larger dimensions is not edge-transitive.
基金Excellent Teacher Foundation of Guangdong Province(Q02084) Natural Science Foundation of Guangdong Province(04010397)
文摘Supercontinuum spectrum generation in a dispersion-flattened and decreasing fiber with two orthogonally polarized pulses was simulated and calculated. The research results indicated that the supercontinuum spectrum generated by two orthogonally polarized pulses is wider and flatter than that generated by single polarized pulse due to cross-phase modulation. The cross-phase modulation effect can enhance the supercontinuum spectrum generation. When the pump power of the input pulse is lower, the enhancement of supercontinuum spectrum generation by cross-phase modulation effect is more significant.
文摘We examine the traffic lights regime to enable the fastest overall approach to a city for a specific case. The case involves a traffic light where one continues on the main road, into which additional cars are entering at the light. At this intersection an alternative route begins, which is longer but into which no additional cars are entering. To keep the total number of vehicles constant, we subtract on the main road far from the intersection, the same number of cars as were added at the intersection. In addition to checking different densities we check also the influence of changes in the number of cars which were added. We calculate the Fourier transform of the average on each traffic light cycles of the velocity on the main road and bypass. We obtained different results for different cases. All the cases can be written as 1/fa .
基金supported by the National Natural Science Foundation of China (21821002, 21772222, and 91956112)Chinese Academy of Sciences (XDB20000000)Science and Technology Commission of Shanghai Municipality (18JC1415600 and 20JC1417100)。
文摘Organic electrosynthesis has been widely used as an environmentally conscious alternative to conventional methods for redox reactions because it utilizes electric current as a traceless redox agent instead of chemical redox agents. Indirect electrolysis employing a redox catalyst has received tremendous attention, since it provides various advantages compared to direct electrolysis. With indirect electrolysis, overpotential of electron transfer can be avoided, which is inherently milder, thus wide functional group tolerance can be achieved. Additionally, chemoselectivity, regioselectivity, and stereoselectivity can be tuned by the redox catalysts used in indirect electrolysis. Furthermore, electrode passivation can be avoided by preventing the formation of polymer films on the electrode surface. Common redox catalysts include N-oxyl radicals, hypervalent iodine species, halides, amines, benzoquinones(such as DDQ and tetrachlorobenzoquinone), and transition metals. In recent years, great progress has been made in the field of indirect organic electrosynthesis using transition metals as redox catalysts for reaction classes including C–H functionalization, radical cyclization, and cross-coupling of aryl halides-each owing to the diverse reactivity and accessible oxidation states of transition metals. Although various reviews of organic electrosynthesis are available, there is a lack of articles that focus on recent research progress in the area of indirect electrolysis using transition metals, which is the impetus for this review.