This paper describes the operational issues and basic technical requirements of modern aerial photogrammetry. The accuracy of photogrammetric point determination and the y-parallax at corresponding model points is ana...This paper describes the operational issues and basic technical requirements of modern aerial photogrammetry. The accuracy of photogrammetric point determination and the y-parallax at corresponding model points is analyzed when stereo models are reconstituted by using the exterior orientation elements of aerial images. Real aerial photographs, at image scales from 1:2 500 to 1:6 0000, with DGPS/IMU data taken from various topographies in China were processed by our POS-supported bundle block adjustment program WuCAPS. The empirical results verified that the accuracy of the exterior orientation elements from bundle block adjustment meets the requirements of the specifications of topographic mapping. However, the accuracy of the exterior orientation elements determined by POS fails to meet the requirements of the specifica- tions of topographic mapping.展开更多
The grid DEM(digital elevation model) generation can be from any of a number of sources:for instance,analogue to digital conversion of contour maps followed by application of the TIN model,or direct elevation point mo...The grid DEM(digital elevation model) generation can be from any of a number of sources:for instance,analogue to digital conversion of contour maps followed by application of the TIN model,or direct elevation point modelling via digital photogrammetry applied to airborne images or satellite images.Currently,apart from the deployment of point-clouds from LiDAR data acquisition,the generally favoured approach refers to applications of digital photogrammetry.One of the most important steps in such deployment is the stereo matching process for conjugation point(pixel) establishment:very difficult in modelling any homogenous areas like water cover or forest canopied areas due to the lack of distinct spatial features.As a result,application of automated procedures is sure to generate erroneous elevation values.In this paper,we present and apply a method for improving the quality of stereo DEMs generated via utilization of an entropy texture filter.The filter was applied for extraction of homogenous areas before stereo matching so that a statistical texture filter could then be applied for removing anomalous evaluation values prior to interpolation and accuracy assessment via deployment of a spatial correlation technique.For exemplification,we used a stereo pair of ASTER 1B images.展开更多
Omnidirectional imaging sensors have been used in more and more applications when a very large field of view is required.In this paper,we investigate the unwrapping,epipolar geometry and stereo rectification issues fo...Omnidirectional imaging sensors have been used in more and more applications when a very large field of view is required.In this paper,we investigate the unwrapping,epipolar geometry and stereo rectification issues for omnidirectional vision when the particular mirror model and the camera parameters are unknown in priori.First,the omnidirectional camera is calibrated under the Taylor model,and the parameters related to this model are obtained.In order to make the classical computer vision algorithms of conventional perspective cameras applicable,the ring omnidirectional image is unwrapped into two kinds of panoramas:cylinder and cuboid.Then the epipolar geometry of arbitrary camera configuration is analyzed and the essential matrix is deduced with its properties being indicated for ring images.After that,a simple stereo rectification method based on the essential matrix and the conformal mapping is proposed.Simulations and real data experimental results illustrate that our methods are effective for the omnidirectional camera under the constraint of a single view point.展开更多
基金Supported by the National Natural Science Foundation of China (No. 40771176, 40721001), the Program for New Century Excellent Talents in University (No. NCET-04-0662).Acknowledgement The experiment data acquisition are supported by Institute of Remote Sensing Applications Chinese Academy of Sciences, Zhong Fei General Aviation Company, Liaoning Jingwei Surveying & Mapping Technology INC, Dalian Urban Surveying Design Institute, Siwei Aviation Remote Sensing Co. Ltd., Xi'an National surveying & Mapping Aviation Remote Sensing Co. Ltd and so on. These supports are gratefully acknowledged. The author would like to express his hearty gratitude to Fu Jianhong, Xie Chou, Ji Shunping and Yang Ming for participating in partial experiments. The author would like to thank Yang Ming and professor Zhang Jingxiong for their polishing in English.
文摘This paper describes the operational issues and basic technical requirements of modern aerial photogrammetry. The accuracy of photogrammetric point determination and the y-parallax at corresponding model points is analyzed when stereo models are reconstituted by using the exterior orientation elements of aerial images. Real aerial photographs, at image scales from 1:2 500 to 1:6 0000, with DGPS/IMU data taken from various topographies in China were processed by our POS-supported bundle block adjustment program WuCAPS. The empirical results verified that the accuracy of the exterior orientation elements from bundle block adjustment meets the requirements of the specifications of topographic mapping. However, the accuracy of the exterior orientation elements determined by POS fails to meet the requirements of the specifica- tions of topographic mapping.
基金Supported by the Ministry of Human Resource Development (MHRD),India (for Distinguished Institute Fellow)
文摘The grid DEM(digital elevation model) generation can be from any of a number of sources:for instance,analogue to digital conversion of contour maps followed by application of the TIN model,or direct elevation point modelling via digital photogrammetry applied to airborne images or satellite images.Currently,apart from the deployment of point-clouds from LiDAR data acquisition,the generally favoured approach refers to applications of digital photogrammetry.One of the most important steps in such deployment is the stereo matching process for conjugation point(pixel) establishment:very difficult in modelling any homogenous areas like water cover or forest canopied areas due to the lack of distinct spatial features.As a result,application of automated procedures is sure to generate erroneous elevation values.In this paper,we present and apply a method for improving the quality of stereo DEMs generated via utilization of an entropy texture filter.The filter was applied for extraction of homogenous areas before stereo matching so that a statistical texture filter could then be applied for removing anomalous evaluation values prior to interpolation and accuracy assessment via deployment of a spatial correlation technique.For exemplification,we used a stereo pair of ASTER 1B images.
基金supported by the National Natural Science Foundation of China (Nos.60502006,60534070 and 90820306)the Science and Technology Plan of Zhejiang Province,China (No.2007C21007)
文摘Omnidirectional imaging sensors have been used in more and more applications when a very large field of view is required.In this paper,we investigate the unwrapping,epipolar geometry and stereo rectification issues for omnidirectional vision when the particular mirror model and the camera parameters are unknown in priori.First,the omnidirectional camera is calibrated under the Taylor model,and the parameters related to this model are obtained.In order to make the classical computer vision algorithms of conventional perspective cameras applicable,the ring omnidirectional image is unwrapped into two kinds of panoramas:cylinder and cuboid.Then the epipolar geometry of arbitrary camera configuration is analyzed and the essential matrix is deduced with its properties being indicated for ring images.After that,a simple stereo rectification method based on the essential matrix and the conformal mapping is proposed.Simulations and real data experimental results illustrate that our methods are effective for the omnidirectional camera under the constraint of a single view point.