In order to find the test cube for industrial robots as specified by ISO 9283, a seed cube is grown up in an irregular working space of the robot, provided that the corners of the cube do not exceed the boundary of t...In order to find the test cube for industrial robots as specified by ISO 9283, a seed cube is grown up in an irregular working space of the robot, provided that the corners of the cube do not exceed the boundary of the working space. All possible cubes are searched, and the cube with the maximum volume is selected. The calculation examples show that the method of growth can be used for a variety of industrial robots. The method of growth can determine the test cube and test points of irregular working space according to ISO 9283, and can avoid blindness and randomness in the selection of test points.展开更多
文摘In order to find the test cube for industrial robots as specified by ISO 9283, a seed cube is grown up in an irregular working space of the robot, provided that the corners of the cube do not exceed the boundary of the working space. All possible cubes are searched, and the cube with the maximum volume is selected. The calculation examples show that the method of growth can be used for a variety of industrial robots. The method of growth can determine the test cube and test points of irregular working space according to ISO 9283, and can avoid blindness and randomness in the selection of test points.