A new three-component Camassa-Holm equation is introduced. This system is endowed with a structuresimilar to the Camassa-Holm equation. It has peakon solitons and conserves H^1-norm conservation law.
In this paper,a high-efficiency aerothermoelastic analysis method based on unified hypersonic lifting surface theory is established.The method adopts a two-way coupling form that couples the structure,aerodynamic forc...In this paper,a high-efficiency aerothermoelastic analysis method based on unified hypersonic lifting surface theory is established.The method adopts a two-way coupling form that couples the structure,aerodynamic force,and aerodynamic thermo and heat conduction.The aerodynamic force is first calculated based on unified hypersonic lifting surface theory,and then the Eckert reference temperature method is used to solve the temperature field,where the transient heat conduction is solved using Fourier’s law,and the modal method is used for the aeroelastic correction.Finally,flutter is analyzed based on the p-k method.The aerothermoelastic behavior of a typical hypersonic low-aspect ratio wing is then analyzed,and the results indicate the following:(1)the combined effects of the aerodynamic load and thermal load both deform the wing,which would increase if the flexibility,size,and flight time of the hypersonic aircraft increase;(2)the effect of heat accumulation should be noted,and therefore,the trajectory parameters should be considered in the design of hypersonic flight vehicles to avoid hazardous conditions,such as flutter.展开更多
基金Supported by National Natural Science Foundation of China under Grant Nos. 10671156 and 10671153
文摘A new three-component Camassa-Holm equation is introduced. This system is endowed with a structuresimilar to the Camassa-Holm equation. It has peakon solitons and conserves H^1-norm conservation law.
基金supported by the National Natural Science Foundation of China(Grant Nos.11172025 and 91116005)
文摘In this paper,a high-efficiency aerothermoelastic analysis method based on unified hypersonic lifting surface theory is established.The method adopts a two-way coupling form that couples the structure,aerodynamic force,and aerodynamic thermo and heat conduction.The aerodynamic force is first calculated based on unified hypersonic lifting surface theory,and then the Eckert reference temperature method is used to solve the temperature field,where the transient heat conduction is solved using Fourier’s law,and the modal method is used for the aeroelastic correction.Finally,flutter is analyzed based on the p-k method.The aerothermoelastic behavior of a typical hypersonic low-aspect ratio wing is then analyzed,and the results indicate the following:(1)the combined effects of the aerodynamic load and thermal load both deform the wing,which would increase if the flexibility,size,and flight time of the hypersonic aircraft increase;(2)the effect of heat accumulation should be noted,and therefore,the trajectory parameters should be considered in the design of hypersonic flight vehicles to avoid hazardous conditions,such as flutter.