采用基于密度泛函理论的第一性原理研究了立方相结构钛酸钡(Ba Ti O3)晶体性能,分别从能量(价电荷密度、能带结构以及电子态密度图)、光学、及热力学角度开展了模拟计算。计算结果表明立方相Ba Ti O3属于直接带隙半导体材料,不稳定性来...采用基于密度泛函理论的第一性原理研究了立方相结构钛酸钡(Ba Ti O3)晶体性能,分别从能量(价电荷密度、能带结构以及电子态密度图)、光学、及热力学角度开展了模拟计算。计算结果表明立方相Ba Ti O3属于直接带隙半导体材料,不稳定性来源于Ti和O原子之间的轨道杂化作用;光学计算表明,随着入射光能量的增加,反射分数呈无规则波动的形式,晶体的各向异性明显;在热力学方面,热焓和热容随温度升高而升高,自由能随温度升高而下降。展开更多
The introduction of carbon interstitials into high-entropy alloys(HEAs)provides an effective way to improve their properties.However,all such HEA systems explored so far are limited to those with the face-centered-cub...The introduction of carbon interstitials into high-entropy alloys(HEAs)provides an effective way to improve their properties.However,all such HEA systems explored so far are limited to those with the face-centered-cubic(fcc)structure.Here we report the structural,mechanical and physical properties of the refractory(Nb_(0.375)Ta_(0.25)Mo_(0.125)W_(0.125)Re_(0.125))_(100−x)C_(x) HEAs over a wide x range of 0≤x≤20.It is found that,whereas the starting HEA(x=0)is composed of a major body-centered-cubic(bcc)phase with significant impurities,the bcc phase fraction increases with the C concentration and achieves almost 100%at x=20.Moreover,the increase of C content x results in an expansion of the bcc lattice,an enhancement of the microhardness,an increase in residual resistivity and a small variation of density of states at the Fermi level.All these features are consistent with the expectation that carbon atoms occupy the interstitial site.For x≥11.1,the X-ray photoelectron spectroscopy indicates the bond formation between the carbon and metal atoms,suggesting that some carbon atoms may also reside in the lattice site.In addition,a semiquantitative analysis shows that the enhanced mixing entropy caused by carbon addition plays a key role in stabilizing the(nearly)single solid-solution phase.Our study not only provides the first series of carbon interstitial HEAs with a bcc structure,but also helps to better understand the alloying behavior of carbon in refractory HEAs.展开更多
For the Pd-Ta system characterized by a negative heat of formation of -78 kJ/mol, 200 keV xenon ion beam mixing with nano-sized Pd-Ta multilayered films was conducted to study the non-equilibrium phase formation. The ...For the Pd-Ta system characterized by a negative heat of formation of -78 kJ/mol, 200 keV xenon ion beam mixing with nano-sized Pd-Ta multilayered films was conducted to study the non-equilibrium phase formation. The results showed that uniform amorphous alloys can be formed within a composition range of 25 at%-78 at% Ta, which falls in the maximum possible amorphization range of 22 at%-80 at% Ta predicted by the empirical model. Moreover, two metastable crystalline phases both of FCC structure, yet with different lattice constants were obtained. Interestingly, a self-assembled fractal pattern was observed in the Pd52Ta48 multilayered films after irradiation to a dose of 1×1015 Xe+/cm2 and its dimension was determined to be 1.75±0.05. The possible mechanisms for the formation of amorphous and metastable crystalline phases as well as for the growth of the fractal pattern were discussed.展开更多
High-entropy alloys(HEAs)contain multiple principal alloying elements,but usually with simple crystal structures.Quasicrystals are structurally complex phases,but are generally dominated by only one element.However,ne...High-entropy alloys(HEAs)contain multiple principal alloying elements,but usually with simple crystal structures.Quasicrystals are structurally complex phases,but are generally dominated by only one element.However,nearequiatomic high-entropy quasicrystals have rarely been reported because they are difficult to prepare experimentally and predict theoretically.Therefore,the preparation and crystal structures of near-equiatomic high-entropy quasicrystals have drawn much interest.We report a quinary decagonal quasicrystal(DQC)with near-equiatomic alloying elements in Al20Si20Mn20Fe20Ga20 melt-spun ribbons,which is the first to our knowledge.Meanwhile,the structural features of the DQC are characterized in detail.The configurational entropy of both the alloy and DQC satisfies the entropy-based criterion for HEAs,suggesting a high-entropy DQC.Our findings provide a new strategy to develop high-entropy quasicrystals.展开更多
Two-dimensional(2D)superconductors have intriguing physical properties and abundant potential applications.Recently,2D superconductingα-Mo2C and facecentered cubic Mo2C have been controllably prepared and they bring ...Two-dimensional(2D)superconductors have intriguing physical properties and abundant potential applications.Recently,2D superconductingα-Mo2C and facecentered cubic Mo2C have been controllably prepared and they bring new viewpoints to carbon-based superconductivity.Although molybdenum carbides(Mo-Cs)have multiple crystalline stacking orders,there are still few structures reported for the lack of higher energy supply during growth.In this study,we report a two-step vapor deposition method to grow superconducting η-Mo3C2 films with different thicknesses,with the assistance of controllable plasma power.The grownη-Mo3C2 films show polycrystalline characteristics,but they still present superior superconductivity.The 3.0-nm-thick film has the superconducting transition temperature of 5.38 K,and its electrical performances follow truly 2D superconducting transitions.This study will not only exhibit a robust superconductingη-Mo3C2 ultrathin film,but also provides a convenient growth way to realize more carbide-based heterostructures for future device applications.展开更多
文摘采用基于密度泛函理论的第一性原理研究了立方相结构钛酸钡(Ba Ti O3)晶体性能,分别从能量(价电荷密度、能带结构以及电子态密度图)、光学、及热力学角度开展了模拟计算。计算结果表明立方相Ba Ti O3属于直接带隙半导体材料,不稳定性来源于Ti和O原子之间的轨道杂化作用;光学计算表明,随着入射光能量的增加,反射分数呈无规则波动的形式,晶体的各向异性明显;在热力学方面,热焓和热容随温度升高而升高,自由能随温度升高而下降。
基金the foundation of Westlake University for financial supportThe work at Zhejiang University was supported by the National Key Research and Development Program of China(2017YFA0303002)。
文摘The introduction of carbon interstitials into high-entropy alloys(HEAs)provides an effective way to improve their properties.However,all such HEA systems explored so far are limited to those with the face-centered-cubic(fcc)structure.Here we report the structural,mechanical and physical properties of the refractory(Nb_(0.375)Ta_(0.25)Mo_(0.125)W_(0.125)Re_(0.125))_(100−x)C_(x) HEAs over a wide x range of 0≤x≤20.It is found that,whereas the starting HEA(x=0)is composed of a major body-centered-cubic(bcc)phase with significant impurities,the bcc phase fraction increases with the C concentration and achieves almost 100%at x=20.Moreover,the increase of C content x results in an expansion of the bcc lattice,an enhancement of the microhardness,an increase in residual resistivity and a small variation of density of states at the Fermi level.All these features are consistent with the expectation that carbon atoms occupy the interstitial site.For x≥11.1,the X-ray photoelectron spectroscopy indicates the bond formation between the carbon and metal atoms,suggesting that some carbon atoms may also reside in the lattice site.In addition,a semiquantitative analysis shows that the enhanced mixing entropy caused by carbon addition plays a key role in stabilizing the(nearly)single solid-solution phase.Our study not only provides the first series of carbon interstitial HEAs with a bcc structure,but also helps to better understand the alloying behavior of carbon in refractory HEAs.
基金supported by the National Natural Science Foundation of China (Grant No. 50971072)the Ministry of Science and Technology of China (Grant No. 2006CB605201)the Administration of Tsinghua University
文摘For the Pd-Ta system characterized by a negative heat of formation of -78 kJ/mol, 200 keV xenon ion beam mixing with nano-sized Pd-Ta multilayered films was conducted to study the non-equilibrium phase formation. The results showed that uniform amorphous alloys can be formed within a composition range of 25 at%-78 at% Ta, which falls in the maximum possible amorphization range of 22 at%-80 at% Ta predicted by the empirical model. Moreover, two metastable crystalline phases both of FCC structure, yet with different lattice constants were obtained. Interestingly, a self-assembled fractal pattern was observed in the Pd52Ta48 multilayered films after irradiation to a dose of 1×1015 Xe+/cm2 and its dimension was determined to be 1.75±0.05. The possible mechanisms for the formation of amorphous and metastable crystalline phases as well as for the growth of the fractal pattern were discussed.
基金the National Natural Science Foundation of China(51871015 and 51471024)the Selfdetermined Project of the State Key Laboratory for Advanced Metals and Materials(2016Z-13)。
文摘High-entropy alloys(HEAs)contain multiple principal alloying elements,but usually with simple crystal structures.Quasicrystals are structurally complex phases,but are generally dominated by only one element.However,nearequiatomic high-entropy quasicrystals have rarely been reported because they are difficult to prepare experimentally and predict theoretically.Therefore,the preparation and crystal structures of near-equiatomic high-entropy quasicrystals have drawn much interest.We report a quinary decagonal quasicrystal(DQC)with near-equiatomic alloying elements in Al20Si20Mn20Fe20Ga20 melt-spun ribbons,which is the first to our knowledge.Meanwhile,the structural features of the DQC are characterized in detail.The configurational entropy of both the alloy and DQC satisfies the entropy-based criterion for HEAs,suggesting a high-entropy DQC.Our findings provide a new strategy to develop high-entropy quasicrystals.
基金the National Key R&D Program of China(2018YFA0305800)the Fundamental Research Funds for the Central Universities(020414380145 and 020414380153)+2 种基金the National Natural Science Foundation of China(11674154,11761131010,51972163,11904163,61974021 and 11525415)the Natural Science Foundation of Jiangsu Province(BK20190010)the Fok Ying-Tong Education Foundation of China(171038)。
文摘Two-dimensional(2D)superconductors have intriguing physical properties and abundant potential applications.Recently,2D superconductingα-Mo2C and facecentered cubic Mo2C have been controllably prepared and they bring new viewpoints to carbon-based superconductivity.Although molybdenum carbides(Mo-Cs)have multiple crystalline stacking orders,there are still few structures reported for the lack of higher energy supply during growth.In this study,we report a two-step vapor deposition method to grow superconducting η-Mo3C2 films with different thicknesses,with the assistance of controllable plasma power.The grownη-Mo3C2 films show polycrystalline characteristics,but they still present superior superconductivity.The 3.0-nm-thick film has the superconducting transition temperature of 5.38 K,and its electrical performances follow truly 2D superconducting transitions.This study will not only exhibit a robust superconductingη-Mo3C2 ultrathin film,but also provides a convenient growth way to realize more carbide-based heterostructures for future device applications.