In order to improve the discharge capacity and cyclic life of Mg-Co-based alloy, ternary Mg45M5Co50 (M=Pd, Zr) alloys were synthesized via mechanical alloying. TEM analysis demonstrates that these alloys all possess...In order to improve the discharge capacity and cyclic life of Mg-Co-based alloy, ternary Mg45M5Co50 (M=Pd, Zr) alloys were synthesized via mechanical alloying. TEM analysis demonstrates that these alloys all possess body-centered cubic (BCC) phase in nano-crystalline. Electrochemical experiments show that Mg45Zr5Co50 electrode exhibits the highest capacity (425 mA·h/g) among the Mg45M5Co50 (M=Mg, Pd, Zr) alloys. And Mg45Pd5Co50 electrode lifts not only the initial discharge capacity (379 mA·h/g), but also the discharge kinetics, e.g., exchange current density and hydrogen diffusion ability from that of Mg50Co50. It could be concluded that the electrochemical performances were enhanced by substituting Zr and Pd for Mg in Mg-Co-based alloy.展开更多
基金Projects(51471087,61370042,21173041,11204031,11472080)supported by the National Natural Science Foundation of ChinaProject(13KJA430003)supported by the Jiangsu Higher Education Institutions of ChinaProject(BK20141336)supported by the Natural Science Foundation of Jiangsu Province,China
文摘In order to improve the discharge capacity and cyclic life of Mg-Co-based alloy, ternary Mg45M5Co50 (M=Pd, Zr) alloys were synthesized via mechanical alloying. TEM analysis demonstrates that these alloys all possess body-centered cubic (BCC) phase in nano-crystalline. Electrochemical experiments show that Mg45Zr5Co50 electrode exhibits the highest capacity (425 mA·h/g) among the Mg45M5Co50 (M=Mg, Pd, Zr) alloys. And Mg45Pd5Co50 electrode lifts not only the initial discharge capacity (379 mA·h/g), but also the discharge kinetics, e.g., exchange current density and hydrogen diffusion ability from that of Mg50Co50. It could be concluded that the electrochemical performances were enhanced by substituting Zr and Pd for Mg in Mg-Co-based alloy.