Rhombus-like SmCO3OH microplates with the edge lengths ranging from 5 μm to 10 μm and the thickness about 1.5 μm were synthesized through a simple hydrothermal method using urea as the precipitance. The structure a...Rhombus-like SmCO3OH microplates with the edge lengths ranging from 5 μm to 10 μm and the thickness about 1.5 μm were synthesized through a simple hydrothermal method using urea as the precipitance. The structure and properties of the rhombus-like SmCO3OH microplates were characterized by X-ray diffraction, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The optical property of the rhombus-like SmCO3OH microplates doped with Eu^3+ was investigated by photoluminescence. A broad and strong emission band at 677 nm was obtained, which can be contributed to producing light conversion film.展开更多
To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm...To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibra- tion techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way.展开更多
According to our engineering research on satellite-borne laser retroreflector array, some suggestions are proposed on how to manufacture a new Apollo LLRA that can make us measure one illuminating point and unillumina...According to our engineering research on satellite-borne laser retroreflector array, some suggestions are proposed on how to manufacture a new Apollo LLRA that can make us measure one illuminating point and unilluminating area on the moon's surface. These suggestions are: to control the dihedral angle offset within ± 0.1″; to use the larger aperture of the transparent face of cube corner prisms; to investigate how to separate out Apollo's reflected laser from mixed beam hitting on the LLR system.展开更多
The family of Cr(Ⅲ) and Fe(Ⅲ)-doped rutile pigments of nominal composition (M^ⅢM^V)xTi1-2xO2, with M^Ⅲ = Cr(Ⅲ) or Fe(Ⅲ) and M'(V) = Sb, Nb, Ta, with x = 0.03, 0.15 and 0.25 were investigated as cera...The family of Cr(Ⅲ) and Fe(Ⅲ)-doped rutile pigments of nominal composition (M^ⅢM^V)xTi1-2xO2, with M^Ⅲ = Cr(Ⅲ) or Fe(Ⅲ) and M'(V) = Sb, Nb, Ta, with x = 0.03, 0.15 and 0.25 were investigated as ceramic pigments covering the yellow-ochre-brown palette. The formulations containing Fe(Ⅲ) are novel compositions not included in the commercial rutile pigments. The materials were characterized by XRD (X-ray diffraction) analysis and FTIR (Fourier transformed infrared spectroscopy). The transition temperature from anatase-to-rutile was estimated by the evolution of the spectral patterns. This crystal phase transition is responsible of the color formation. A higher distortion of TiO6 octahedra is observed in the case of (FeSb) containing cells which contribute to the enhancement of the light absorption. The coloring performance of all the formulations were evaluated by enameling the mixtures containing 5% pigments and commercial frits representative of single and double firing industrial processes. The chromatic values obtained are in the yellow to brown domain of the chromatic plot, depending on the composition of the pigment-frit batch. In the case of the Fe-glazes, and particularly the combination (FeNb), the chromatic values are close to the best yellow tinting. This new FeNb-rutile pigment could be a more benign substitute of Cr-yellow pigments. The homogeneity of the enamels was confirmed by SEM (scanning electron microscopy)-EDAX (energy dispersive X-ray analysis) microscopy.展开更多
In this study we used l-allyl-3-methyl imidazole formate ([Amim][COOH]) as ionic liquid to pre-treat the cellulose and determined the rate of polymerization and enzymatic hydrolysis. The results showed that pretreat...In this study we used l-allyl-3-methyl imidazole formate ([Amim][COOH]) as ionic liquid to pre-treat the cellulose and determined the rate of polymerization and enzymatic hydrolysis. The results showed that pretreatment with ([Amim][COOH]) significantly decreased the cellulose polymerization. As the pretreatment temperature went up, the enzymatic hydrolysis rate was first increased and then decreased The maximal enzymatic hydrolysis rate was achieved when the pretreatment temperature was 90 ℃. Under the ultrasonic condition, the initial rate of enzmatic hydrolysis for the ionic liquid-treated cellulose was up to 11.10 gL-1h-1, which was 33% increase compared to the untreated cellulose. Scanning Electronic Microscopy (SEM) and Fourier Transform Infrared-Raman Spectroscop (FT-IR) analysis showed that ionic liquidtreated cellulose started to depolymerize. In addition, the cr3'stallinity of the cellulose was significantly decreased after pretreatment with ionic liquid.展开更多
In this study, mechanical tests were conducted oil a face-centered cubic FeCoNiCrMn high-entropy alloy, both in tension and compression, in a wide range of strain rates (10^-4-10^4 s^-1) to systematically investigat...In this study, mechanical tests were conducted oil a face-centered cubic FeCoNiCrMn high-entropy alloy, both in tension and compression, in a wide range of strain rates (10^-4-10^4 s^-1) to systematically investigate its dynamic response and underlying deformation mechanism. Materials with different grain sizes were tested to understand the effect of grain size, thus grain boundary volume, on the mechanical prop-erties. Microstructures of various samples both before and after deformation were examined using elec-tron backscatter diffraction and transmission electron microscopy. The dislocation structure as well as deformation-induced twins were analyzed and correlated with the measured mechanical properties. Plastic stability during tension of the current high-entropy alloy (HEA), in particular, at dynamic strain rates, was discussed in lights of strain-rate sensitivity and work hardening rate. It was found that, under dynamic conditions, the strength and uniform ductility increased simultaneously as a result of the mas-sive formation of deformation twins. Specifically, an ultimate tensile strength of 734 MPa and uniform elongation of-63% are obtained at 2.3×10^3 s^-1, indicating that the alloy has great potential for energy absorption upon impact loading.展开更多
We constructed and developed an in-situ cryogenic nanomechanical system to study small-scale mechanical behavior of materials at low temperatures. Uniaxial compression of two body-centered-cubic (bcc) metals, Nb and...We constructed and developed an in-situ cryogenic nanomechanical system to study small-scale mechanical behavior of materials at low temperatures. Uniaxial compression of two body-centered-cubic (bcc) metals, Nb and W, with diameters between 400 and 1300 rim, was studied at room temperature and at 165 K. Experiments were conducted inside of a Scanning Electron Microscope (SEM) equipped with a nanomechanical module, with simultaneous cooling of sample and diamond tip. Stress-strain data at 165 K exhibited higher yield strengths and more extensive strain bursts on average, as compared to those at 298 K. We discuss these differences in the framework of nano-sized plasticity and intrinsic lattice resistance. Dislocation dynamics simulations with surface-controlled dislocation multiplication were used to gain insight into size and temperature effects on deformation of nano-sized bcc metals.展开更多
A novel type of porous scaffold was fabricated from single protein nanogels. The nanogels with single protein as core and crosslinked polymer network as shell were prepared through a two-step procedure including surfa...A novel type of porous scaffold was fabricated from single protein nanogels. The nanogels with single protein as core and crosslinked polymer network as shell were prepared through a two-step procedure including surface acryloylation and in situ radical polymerization. The formation of single protein nanogels was verified by matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer, transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses. Subsequently, the porous scaffolds were fabricated through a solvent evaporating process of aqueous nanogel solutions. The porous scaffolds were characterized by Fourier transform infrared (FTIR), scanning electronic microscopy (SEM), atomic force microscopy (AFM), and fluorescence microscopy. Interestingly, the obtained porous nanogel scaffolds presented multi-level porous morphologies with macro and nano scale pores, providing better spaces and microenvironments than normal macro porous scaffolds. Cell proliferation assay of nanogels showed low cytotoxicity. Considering that both the protein species and polymer constitutes can be pre-designed and adjusted, these multi-level porous nanogel scaffolds are promising candidates for tissue culture applications.展开更多
Soils contain various kinds of crystalline to amorphous solid particles with at least one dimension in the nanoscale (〈 100 nm). These nanoparticles contribute greatly to dynamic soil processes such as soil genesis...Soils contain various kinds of crystalline to amorphous solid particles with at least one dimension in the nanoscale (〈 100 nm). These nanoparticles contribute greatly to dynamic soil processes such as soil genesis, trace element cycling, contaminant transport, and chemical reaction. The nano-sized fraction of an Anthrosol was obtained to determine the occurrence, chemical composition, structure, and mineral phases of nanoparticles using high-resolution transmission electron microscopy (HRTEM) equipped with an energy-dispersive X-ray spectroscopy. Selected area electron diffraction or the fast Fourier transform of high-resolution images was used in structural characterization of the nanoparticles with HRTEM. Two nanoscale mineral types, i.e., mineral nanoparticles and nanomi- nerals, were observed in the Anthrosol. Mineral nanoparticles in soil included well crystalline aluminumsilicate nanosheets, nanorods, and nanoparticles. Nanosheets with a length of 120-150 nm and a width of about 10-20 nm were identified as chlorite/vermiculite series. The presence of clear lattice fringe spacing in HRTEM image of nanoparticles indicated that mineral nanoparticles had a relatively good crystallinity. The nanomineral ferrihydrite also existed in the Anthrosol. The HRTEM images and the particle size distribution histogram suggested that these ferrihydrite nanoparticles were quite homogeneous, and had a narrow size distribution range (1-7 nm) with a mean diameter of 3.6 4- 1.6 nm. Our HRTEM observation indicated that mineral nanoparticles and nanominerals were common and widely distributed in Anthrosols. HRTEM and selected area diffraction or lattice fringe spacing characterization provided further proofs to the structure of nanoparticles formed in soil.展开更多
文摘Rhombus-like SmCO3OH microplates with the edge lengths ranging from 5 μm to 10 μm and the thickness about 1.5 μm were synthesized through a simple hydrothermal method using urea as the precipitance. The structure and properties of the rhombus-like SmCO3OH microplates were characterized by X-ray diffraction, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The optical property of the rhombus-like SmCO3OH microplates doped with Eu^3+ was investigated by photoluminescence. A broad and strong emission band at 677 nm was obtained, which can be contributed to producing light conversion film.
基金Projects (Nos. 30370371 and 60468002) supported by the NationalNatural Science Foundation of China
文摘To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibra- tion techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way.
文摘According to our engineering research on satellite-borne laser retroreflector array, some suggestions are proposed on how to manufacture a new Apollo LLRA that can make us measure one illuminating point and unilluminating area on the moon's surface. These suggestions are: to control the dihedral angle offset within ± 0.1″; to use the larger aperture of the transparent face of cube corner prisms; to investigate how to separate out Apollo's reflected laser from mixed beam hitting on the LLR system.
文摘The family of Cr(Ⅲ) and Fe(Ⅲ)-doped rutile pigments of nominal composition (M^ⅢM^V)xTi1-2xO2, with M^Ⅲ = Cr(Ⅲ) or Fe(Ⅲ) and M'(V) = Sb, Nb, Ta, with x = 0.03, 0.15 and 0.25 were investigated as ceramic pigments covering the yellow-ochre-brown palette. The formulations containing Fe(Ⅲ) are novel compositions not included in the commercial rutile pigments. The materials were characterized by XRD (X-ray diffraction) analysis and FTIR (Fourier transformed infrared spectroscopy). The transition temperature from anatase-to-rutile was estimated by the evolution of the spectral patterns. This crystal phase transition is responsible of the color formation. A higher distortion of TiO6 octahedra is observed in the case of (FeSb) containing cells which contribute to the enhancement of the light absorption. The coloring performance of all the formulations were evaluated by enameling the mixtures containing 5% pigments and commercial frits representative of single and double firing industrial processes. The chromatic values obtained are in the yellow to brown domain of the chromatic plot, depending on the composition of the pigment-frit batch. In the case of the Fe-glazes, and particularly the combination (FeNb), the chromatic values are close to the best yellow tinting. This new FeNb-rutile pigment could be a more benign substitute of Cr-yellow pigments. The homogeneity of the enamels was confirmed by SEM (scanning electron microscopy)-EDAX (energy dispersive X-ray analysis) microscopy.
文摘In this study we used l-allyl-3-methyl imidazole formate ([Amim][COOH]) as ionic liquid to pre-treat the cellulose and determined the rate of polymerization and enzymatic hydrolysis. The results showed that pretreatment with ([Amim][COOH]) significantly decreased the cellulose polymerization. As the pretreatment temperature went up, the enzymatic hydrolysis rate was first increased and then decreased The maximal enzymatic hydrolysis rate was achieved when the pretreatment temperature was 90 ℃. Under the ultrasonic condition, the initial rate of enzmatic hydrolysis for the ionic liquid-treated cellulose was up to 11.10 gL-1h-1, which was 33% increase compared to the untreated cellulose. Scanning Electronic Microscopy (SEM) and Fourier Transform Infrared-Raman Spectroscop (FT-IR) analysis showed that ionic liquidtreated cellulose started to depolymerize. In addition, the cr3'stallinity of the cellulose was significantly decreased after pretreatment with ionic liquid.
基金supported by the National Natural Science Foundation of China(51671018,51531001,51422101,51371003,and 51671021)111 Project(B07003)+5 种基金International S&T Cooperation Program of China(2015DFG52600)Program for Changjiang Scholars and Innovative Research Team in University of China(IRT_14R05)the Projects of SKL-AMM-USTB(2016Z-04,2016-09,2016Z-16)the financial support from the Top-Notch Young Talents Programthe Fundamental Research Funds for the Central Universitiesthe financial support by US-NSF under contract DMR-1408722
文摘In this study, mechanical tests were conducted oil a face-centered cubic FeCoNiCrMn high-entropy alloy, both in tension and compression, in a wide range of strain rates (10^-4-10^4 s^-1) to systematically investigate its dynamic response and underlying deformation mechanism. Materials with different grain sizes were tested to understand the effect of grain size, thus grain boundary volume, on the mechanical prop-erties. Microstructures of various samples both before and after deformation were examined using elec-tron backscatter diffraction and transmission electron microscopy. The dislocation structure as well as deformation-induced twins were analyzed and correlated with the measured mechanical properties. Plastic stability during tension of the current high-entropy alloy (HEA), in particular, at dynamic strain rates, was discussed in lights of strain-rate sensitivity and work hardening rate. It was found that, under dynamic conditions, the strength and uniform ductility increased simultaneously as a result of the mas-sive formation of deformation twins. Specifically, an ultimate tensile strength of 734 MPa and uniform elongation of-63% are obtained at 2.3×10^3 s^-1, indicating that the alloy has great potential for energy absorption upon impact loading.
基金the financial support of the Kavli Nanoscience Institute (KNI) through LEE Seok-Woo’s prized post-doctoral fellowship, of the Keck Institute for Space Studies at Caltech, and of JRG’s NASA Early Career grantCHENG YinTong acknowledges the financial support of the Caltech SURF program
文摘We constructed and developed an in-situ cryogenic nanomechanical system to study small-scale mechanical behavior of materials at low temperatures. Uniaxial compression of two body-centered-cubic (bcc) metals, Nb and W, with diameters between 400 and 1300 rim, was studied at room temperature and at 165 K. Experiments were conducted inside of a Scanning Electron Microscope (SEM) equipped with a nanomechanical module, with simultaneous cooling of sample and diamond tip. Stress-strain data at 165 K exhibited higher yield strengths and more extensive strain bursts on average, as compared to those at 298 K. We discuss these differences in the framework of nano-sized plasticity and intrinsic lattice resistance. Dislocation dynamics simulations with surface-controlled dislocation multiplication were used to gain insight into size and temperature effects on deformation of nano-sized bcc metals.
基金support from the National Natural Science Foundation of China (20974062)National Basic Research Program (973 Program, 2009CB930400)+1 种基金Shanghai Leading Academic Discipline Project (B202)China National Funds for Distinguished Young Scientists (21025417)
文摘A novel type of porous scaffold was fabricated from single protein nanogels. The nanogels with single protein as core and crosslinked polymer network as shell were prepared through a two-step procedure including surface acryloylation and in situ radical polymerization. The formation of single protein nanogels was verified by matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer, transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses. Subsequently, the porous scaffolds were fabricated through a solvent evaporating process of aqueous nanogel solutions. The porous scaffolds were characterized by Fourier transform infrared (FTIR), scanning electronic microscopy (SEM), atomic force microscopy (AFM), and fluorescence microscopy. Interestingly, the obtained porous nanogel scaffolds presented multi-level porous morphologies with macro and nano scale pores, providing better spaces and microenvironments than normal macro porous scaffolds. Cell proliferation assay of nanogels showed low cytotoxicity. Considering that both the protein species and polymer constitutes can be pre-designed and adjusted, these multi-level porous nanogel scaffolds are promising candidates for tissue culture applications.
基金Supported by the National Natural Science Foundation of China (No. 40971131)the Ph.D. Program Foundation of Ministry of Education of China (No. 20090101110088)
文摘Soils contain various kinds of crystalline to amorphous solid particles with at least one dimension in the nanoscale (〈 100 nm). These nanoparticles contribute greatly to dynamic soil processes such as soil genesis, trace element cycling, contaminant transport, and chemical reaction. The nano-sized fraction of an Anthrosol was obtained to determine the occurrence, chemical composition, structure, and mineral phases of nanoparticles using high-resolution transmission electron microscopy (HRTEM) equipped with an energy-dispersive X-ray spectroscopy. Selected area electron diffraction or the fast Fourier transform of high-resolution images was used in structural characterization of the nanoparticles with HRTEM. Two nanoscale mineral types, i.e., mineral nanoparticles and nanomi- nerals, were observed in the Anthrosol. Mineral nanoparticles in soil included well crystalline aluminumsilicate nanosheets, nanorods, and nanoparticles. Nanosheets with a length of 120-150 nm and a width of about 10-20 nm were identified as chlorite/vermiculite series. The presence of clear lattice fringe spacing in HRTEM image of nanoparticles indicated that mineral nanoparticles had a relatively good crystallinity. The nanomineral ferrihydrite also existed in the Anthrosol. The HRTEM images and the particle size distribution histogram suggested that these ferrihydrite nanoparticles were quite homogeneous, and had a narrow size distribution range (1-7 nm) with a mean diameter of 3.6 4- 1.6 nm. Our HRTEM observation indicated that mineral nanoparticles and nanominerals were common and widely distributed in Anthrosols. HRTEM and selected area diffraction or lattice fringe spacing characterization provided further proofs to the structure of nanoparticles formed in soil.