This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of bot...This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of both a single pile and pile groups.Considering the pile group effect and the skin friction from both outer and inner soils,an analytical solution is developed to calculate the settlement and axial force in large-diameter pipe pile groups.The analytical solution was verified by centrifuge and field testing results.An extensive parametric analysis was performed to study the bearing performance of the pipe pile groups.The results reveal that the axial forces in group piles are not the same.The larger the distance from central pile,the larger the axial force.The axial force in the central pile is the smallest,while that in corner piles is the largest.The axial force on the top of the corner piles decreases while that in the central pile increases with increasing of pile spacing and decreasing of pile length.The axial force in side piles varies little with the variations of pile spacing,pile length,and shear modulus of the soil and is approximately equal to the average load shared by one pile.For a pile group,the larger the pile length is,the larger the influence radius is.As a result,the pile group effect is more apparent for a larger pile length.The settlement of pile groups decreases with increasing of the pile number in the group and the shear modulus of the underlying soil.展开更多
In recent years,a new type of foundation named composite piled raft foundation (also called long short composite piled raft) has been developed.Where designing shallow foundations would mean unacceptable settlement,or...In recent years,a new type of foundation named composite piled raft foundation (also called long short composite piled raft) has been developed.Where designing shallow foundations would mean unacceptable settlement,or other environmental risks exist which could impair the structure in the future,composite piled raft foundations could be used.Finite element method was applied to study the behavior of this type of foundation subjected to vertical loading.In order to determine an optimal pile arrangement pattern which yields the minimum settlement,various pile arrangements under different vertical stress levels were investigated.Results show that with increasing the vertical stress on the raft,the effectiveness of the arrangements of short and long piles become more visible.In addition,a new factor named "composite piled raft efficiency" (CPRE) has been defined which determines the efficiency of long short piles arrangement in a composite piled raft foundation.This factor will increase when short piles take more axial stresses and long piles take less axial stresses.In addition,it is found that the changes in settlements for different long short piles arrangement are in a well agreement with changes in values of CPRE ratio.Thus,CPRE ratio can be used as a factor to determine the efficiency of piles arrangements in composite piled raft foundation from the view point of reducing raft settlements.展开更多
基金supported by the Joint High Speed Railway Key Program of National Natural Science Foundation of China (Grant No.U1134207)the National Natural Science Foundation of China (Grant No.51378177)+1 种基金the Program for Excellent University Talents in New Century (Grant No.NCET-12-0843)the Fundamental Research Fund for the Central Universities (Grant No.106112014CDJZR200007)
文摘This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of both a single pile and pile groups.Considering the pile group effect and the skin friction from both outer and inner soils,an analytical solution is developed to calculate the settlement and axial force in large-diameter pipe pile groups.The analytical solution was verified by centrifuge and field testing results.An extensive parametric analysis was performed to study the bearing performance of the pipe pile groups.The results reveal that the axial forces in group piles are not the same.The larger the distance from central pile,the larger the axial force.The axial force in the central pile is the smallest,while that in corner piles is the largest.The axial force on the top of the corner piles decreases while that in the central pile increases with increasing of pile spacing and decreasing of pile length.The axial force in side piles varies little with the variations of pile spacing,pile length,and shear modulus of the soil and is approximately equal to the average load shared by one pile.For a pile group,the larger the pile length is,the larger the influence radius is.As a result,the pile group effect is more apparent for a larger pile length.The settlement of pile groups decreases with increasing of the pile number in the group and the shear modulus of the underlying soil.
基金Imam Khomeini International University(IKIU)for providing financial support during the research undertaken in the Civil Engineering Department at IKIU,Iran
文摘In recent years,a new type of foundation named composite piled raft foundation (also called long short composite piled raft) has been developed.Where designing shallow foundations would mean unacceptable settlement,or other environmental risks exist which could impair the structure in the future,composite piled raft foundations could be used.Finite element method was applied to study the behavior of this type of foundation subjected to vertical loading.In order to determine an optimal pile arrangement pattern which yields the minimum settlement,various pile arrangements under different vertical stress levels were investigated.Results show that with increasing the vertical stress on the raft,the effectiveness of the arrangements of short and long piles become more visible.In addition,a new factor named "composite piled raft efficiency" (CPRE) has been defined which determines the efficiency of long short piles arrangement in a composite piled raft foundation.This factor will increase when short piles take more axial stresses and long piles take less axial stresses.In addition,it is found that the changes in settlements for different long short piles arrangement are in a well agreement with changes in values of CPRE ratio.Thus,CPRE ratio can be used as a factor to determine the efficiency of piles arrangements in composite piled raft foundation from the view point of reducing raft settlements.