The effects of temperature on atomic anti-site behaviors in L12-Ni3(AlFe) phases were studied using microscopic phase-field dynamic model in precipitation progress of Ni75Al20Fe5 alloy.The results show that with the i...The effects of temperature on atomic anti-site behaviors in L12-Ni3(AlFe) phases were studied using microscopic phase-field dynamic model in precipitation progress of Ni75Al20Fe5 alloy.The results show that with the increase of temperature,the formation of NiAl and AlNi anti-sites is much easier in Ni3(AlFe),and Ni and Al anti-site atoms show clearly stronger temperature-dependent than Fe anti-site atoms.The evolution progress of anti-site atoms is completed at the initial growth stage of L12-Ni3(AlFe) phases.The site occupation probabilities of Ni atoms on the sublattice A(NiNi,face centers sites of FCC),and Al and Fe atoms on the sublattice B(AlAl and FeAl,corners sites of FCC) all present the degressive tendency with the temperature increasing.Fe atoms mainly prefer to occupy the Al sublattice at the whole temperature range.展开更多
In this paper, the amplification factor (ks ) of peek ground motion with different exceedance probability in class Ⅱ and Ⅲ sites over Shandong Province was estimated by analyzing the seismic response data of soil ...In this paper, the amplification factor (ks ) of peek ground motion with different exceedance probability in class Ⅱ and Ⅲ sites over Shandong Province was estimated by analyzing the seismic response data of soil layers collected from 358 boreholes of class Ⅱ sites and 140 boreholes of class Ⅲ site. From the results, one can conclude that: (1) The scatter plot of ks generally obeys a normal distribution ; (2) ks decreases with the increase of the strength of input ground motion, which is more apparent in Class Ⅲ site than in class lI site; (3) for class Ⅱ site, with the increase of depth of the bedrock interface where ground motion inputs, ks increases gradually until to a stable value when the depth reaches up to approximately 20 meters or larger. Yet, for class Ⅲ site, ks is insensitive to the depth; (4) the average of ks for class Ⅱ site is 1.47, slightly larger than that used in the Seismic Ground Motion Parameters Zonation Map of China ( GB 18306-2001 ). Also, ks in class Ⅱ and Ⅲ sites at different levels of peak ground acceleration over Shandong Province is preliminarily discussed in the paper.展开更多
Generalized Inversion Method has been used to estimate the spatial variation of site effects,using the digital data of SH-waves recorded by 63 stations in the Capital Circle Region of China from 2001 to 2006.We gained...Generalized Inversion Method has been used to estimate the spatial variation of site effects,using the digital data of SH-waves recorded by 63 stations in the Capital Circle Region of China from 2001 to 2006.We gained the site effects of all stations participating in the calculation.We found that the site effect of rock was stabile and about 1.0 from 1.0Hz to 10.0Hz,while the site effect of deposit was high in low frequencies,about 3 ~ 7 from 1.0Hz to 8.0Hz,and the site effect was protuberant at about 5.0Hz,then fell as the frequency increased.The result shows the shape and intensity of station site effects are mainly influenced by the lithology below the station,and possibly also by the local geological structure.展开更多
We report on InGaAs quantum disks (QDks) controllably formed on the top (001) facet of nano-patterned GaAs pyramidal platforms. The QDks exhibit pyramidal shape with special facets and varied dimensions, depending...We report on InGaAs quantum disks (QDks) controllably formed on the top (001) facet of nano-patterned GaAs pyramidal platforms. The QDks exhibit pyramidal shape with special facets and varied dimensions, depending on the GaAs pyramidal buffer and the amount of InGaAs deposited. The formation of QDks is explained by the overgrowth of an InGaAs layer and thereafter coalescence of small InGaAs islands. Photoluminescence (PL) characteristics of ensemble QDks and exciton features of individual QDks together demonstrate that we may achieve a transition from zero-dimensional (0D) to two-dimensional (2D) quantum structure with increasing QDk size. This transition provides the flexibility to continuously tailor the dimensionality and subsequently the quantum confinement of semiconductor nanostructures via site-controlled self-assembled epitaxy for device applications based on single quantum structures.展开更多
基金Project(50671084) supported by the National Natural Science Foundation of ChinaProject(2009021028) supported by Science and Technique Foundation for Young Scholars of Shanxi Province, ChinaProject(20100470125) supported by National Science Foundation for Post-doctoral Scientists of China
文摘The effects of temperature on atomic anti-site behaviors in L12-Ni3(AlFe) phases were studied using microscopic phase-field dynamic model in precipitation progress of Ni75Al20Fe5 alloy.The results show that with the increase of temperature,the formation of NiAl and AlNi anti-sites is much easier in Ni3(AlFe),and Ni and Al anti-site atoms show clearly stronger temperature-dependent than Fe anti-site atoms.The evolution progress of anti-site atoms is completed at the initial growth stage of L12-Ni3(AlFe) phases.The site occupation probabilities of Ni atoms on the sublattice A(NiNi,face centers sites of FCC),and Al and Fe atoms on the sublattice B(AlAl and FeAl,corners sites of FCC) all present the degressive tendency with the temperature increasing.Fe atoms mainly prefer to occupy the Al sublattice at the whole temperature range.
基金supported by Shandong Institute of Earthquake Engineering(Natural Science Foundation of Shandong Province(Y2002E01)Shandong Science and Technology Development Project(2010GSF10806),China
文摘In this paper, the amplification factor (ks ) of peek ground motion with different exceedance probability in class Ⅱ and Ⅲ sites over Shandong Province was estimated by analyzing the seismic response data of soil layers collected from 358 boreholes of class Ⅱ sites and 140 boreholes of class Ⅲ site. From the results, one can conclude that: (1) The scatter plot of ks generally obeys a normal distribution ; (2) ks decreases with the increase of the strength of input ground motion, which is more apparent in Class Ⅲ site than in class lI site; (3) for class Ⅱ site, with the increase of depth of the bedrock interface where ground motion inputs, ks increases gradually until to a stable value when the depth reaches up to approximately 20 meters or larger. Yet, for class Ⅲ site, ks is insensitive to the depth; (4) the average of ks for class Ⅱ site is 1.47, slightly larger than that used in the Seismic Ground Motion Parameters Zonation Map of China ( GB 18306-2001 ). Also, ks in class Ⅱ and Ⅲ sites at different levels of peak ground acceleration over Shandong Province is preliminarily discussed in the paper.
基金sponsored by the Special Foundation of China Earthquake Administration (2007-8-26)
文摘Generalized Inversion Method has been used to estimate the spatial variation of site effects,using the digital data of SH-waves recorded by 63 stations in the Capital Circle Region of China from 2001 to 2006.We gained the site effects of all stations participating in the calculation.We found that the site effect of rock was stabile and about 1.0 from 1.0Hz to 10.0Hz,while the site effect of deposit was high in low frequencies,about 3 ~ 7 from 1.0Hz to 8.0Hz,and the site effect was protuberant at about 5.0Hz,then fell as the frequency increased.The result shows the shape and intensity of station site effects are mainly influenced by the lithology below the station,and possibly also by the local geological structure.
文摘We report on InGaAs quantum disks (QDks) controllably formed on the top (001) facet of nano-patterned GaAs pyramidal platforms. The QDks exhibit pyramidal shape with special facets and varied dimensions, depending on the GaAs pyramidal buffer and the amount of InGaAs deposited. The formation of QDks is explained by the overgrowth of an InGaAs layer and thereafter coalescence of small InGaAs islands. Photoluminescence (PL) characteristics of ensemble QDks and exciton features of individual QDks together demonstrate that we may achieve a transition from zero-dimensional (0D) to two-dimensional (2D) quantum structure with increasing QDk size. This transition provides the flexibility to continuously tailor the dimensionality and subsequently the quantum confinement of semiconductor nanostructures via site-controlled self-assembled epitaxy for device applications based on single quantum structures.