In this paper, regarding the time delay as a bifurcation parameter, the stability and Hopf bifurcation of the model of competition between two species in a turbidostat with Beddington-DeAngelis functional response and...In this paper, regarding the time delay as a bifurcation parameter, the stability and Hopf bifurcation of the model of competition between two species in a turbidostat with Beddington-DeAngelis functional response and discrete delay are studied. The Hopf bifurcations can be shown when the delay crosses the critical value. Furthermore, based on the normal form and the center manifold theorem, the type, stability and other properties of the bifurcating periodic solutions are determined. Finally, some numerical simulations are given to illustrate the results.展开更多
基金Acknowledgments The authors would like to thank the editors and the anonymous referees for their helpful suggestions and comments which led to the improvement of our original manuscript. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11561022, 11261017), the China Postdoctoral Science Foundation (Grant No. 2014M562008).
文摘In this paper, regarding the time delay as a bifurcation parameter, the stability and Hopf bifurcation of the model of competition between two species in a turbidostat with Beddington-DeAngelis functional response and discrete delay are studied. The Hopf bifurcations can be shown when the delay crosses the critical value. Furthermore, based on the normal form and the center manifold theorem, the type, stability and other properties of the bifurcating periodic solutions are determined. Finally, some numerical simulations are given to illustrate the results.