期刊文献+
共找到142篇文章
< 1 2 8 >
每页显示 20 50 100
基于稳定竞争自适应重加权采样的光谱分析无标模型传递方法 被引量:15
1
作者 张晓羽 李庆波 张广军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第5期1429-1433,共5页
提出了一种基于稳定竞争自适应重加权采样(stability competitive adaptive reweighted sampling,SCARS)的无标模型传递方法。利用有用信息标准即稳定度指数(定义为回归系数除以其标准偏差的绝对值)和传递后的预测均方根误差(root mean ... 提出了一种基于稳定竞争自适应重加权采样(stability competitive adaptive reweighted sampling,SCARS)的无标模型传递方法。利用有用信息标准即稳定度指数(定义为回归系数除以其标准偏差的绝对值)和传递后的预测均方根误差(root mean squared error of prediction,RMSEP),选择重要的、受测样参数影响不敏感的波长变量,能够消除或减少不同仪器或测量条件对样本信息反应差异,提高模型传递效果。此外,在该方法中,光谱变量被压缩、降维,从而使模型传递更稳定。采用该方法对谷物的近红外光谱分析模型在不同仪器之间进行传递研究。结果表明,该方法能消除仪器间的大部分差异,较好地实现模型传递效果。与正交信号校正法(orthogonal signal correction,OSC)、蒙特卡罗结合无用信息变量消除法(Monte Carlo uninformative variable elimination,MCUVE)、竞争自适应重加权采样法(competitive adaptive reweighted sampling,CARS)的比较表明,SCARS不仅在传递精度上能取得比OSC、MCUVE及CARS更好的效果,而且能有效地对光谱数据进行压缩,简化并优化传递过程。 展开更多
关键词 稳定竞争自适应加权采样 无标样 模型传递 波长筛选 光谱分析
下载PDF
面向XRF的竞争性自适应重加权算法和粒子群优化的支持向量机定量分析研究 被引量:5
2
作者 程惠珠 杨婉琪 +2 位作者 李福生 马骞 赵彦春 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第12期3742-3746,共5页
研究高效、准确、便捷的土壤重金属检测方法对于了解土壤的污染状况以及开展污染防治工作具有重要的意义。由于X射线荧光光谱分析(XRF)技术具备快速、准确、无损检测、样品制备简单等优势,在土壤重元素定量检测获得广泛应用。XRF仪器测... 研究高效、准确、便捷的土壤重金属检测方法对于了解土壤的污染状况以及开展污染防治工作具有重要的意义。由于X射线荧光光谱分析(XRF)技术具备快速、准确、无损检测、样品制备简单等优势,在土壤重元素定量检测获得广泛应用。XRF仪器测试标准样品的荧光光谱并建立校准曲线,通过反演计算得到待测样品的元素含量。由于样品元素间存在基体效应,以及荧光谱特征峰存在叠加干扰,未经优化的校准曲线的线性度较差,这给反演计算来困难。为了解决上述问题,分别利用小波变换、非对称加权惩罚最小二乘法(arPLS)对光谱进行去噪和扣除本底基线,提高校准曲线的决定系数(R2);运用竞争性自适应重加权算法(CARS),针对不同目标元素优化变量选取;进一步地,基于选取的变量建立粒子群算法(PSO)优化的支持向量机回归(SVR)模型,并通过该模型反演计算各元素含量,提高定量分析的准确度和预测的泛化能力。实验结果显示,经过小波去噪和arPLS本底扣除后的校准曲线的决定系数(R2)有明显提升,Cr、Cu、Zn、As、Pb分别从0.965、0.979、0.971、0.794、0.915提高为0.979、0.987、0.981、0.828、0.953;通过CARS选取的谱线变量的个数大幅度减少,从2 048个通道降低到30个以下,为原来变量个数的1.5%,提高了变量选择的精准性;与偏最小二乘法(PLS)、未优化的SVR模型进行对比,采用CARS变量选择和PSO优化的SVR模型进行含量预测,训练集RC2与测试集RP2的决定系数分别在0.99、0.90以上,预测准确性有明显提高。因此,所提出的竞争性自适应重加权算法和PSO优化的SVR定量分析模型对于土壤重金属元素定量分析具有较好的理论指导和应用价值。 展开更多
关键词 X射线荧光光谱 土壤金属 竞争自适应加权算法 粒子群算法 支持向量机回归模型
下载PDF
窗口竞争性自适应重加权采样策略的近红外特征变量选择方法 被引量:12
3
作者 李跑 周骏 +2 位作者 蒋立文 刘霞 杜国荣 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第5期1428-1432,共5页
通过消除光谱中的冗余信息变量,挑选出代表样品性质的特征变量代替全谱建立定量模型,可以提高近红外分析结果的准确性。基于进化论中适者生存原理的竞争性自适应重加权采样(CARS)算法因具有计算速度快、筛选得到的特征波长少等优点,在... 通过消除光谱中的冗余信息变量,挑选出代表样品性质的特征变量代替全谱建立定量模型,可以提高近红外分析结果的准确性。基于进化论中适者生存原理的竞争性自适应重加权采样(CARS)算法因具有计算速度快、筛选得到的特征波长少等优点,在近红外特征变量筛选方面得到了广泛的应用。然而该方法在计算过程中容易出现校正集和验证集结果不一致情况。这是因为算法过于强调校正集交叉验证结果,且并未考虑相邻变量之间的协同作用。为了建立更加稳健的变量筛选方法,通过结合"窗口"以及CARS算法的优势,提出了一种基于窗口竞争性自适应重加权采样(WCARS)策略的近红外特征变量筛选方法,并将其应用于复杂植物样品近红外光谱与其化学成分含量之间的建模分析。采用WCARS方法可以实现准确定量分析,且通过与竞争性自适应重加权采样(CARS)方法结果相比较, WCARS方法得到的校正集和预测集结果一致,在一定程度上减少了过拟合问题的出现。该策略能有效增强特征变量选择的稳健性,提高了定量模型的可信度,具有一定的应用价值。 展开更多
关键词 近红外光谱仪 化学计量学 窗口竞争自适应加权采样
下载PDF
最小角回归结合竞争性自适应重加权采样的近红外光谱波长选择 被引量:11
4
作者 路皓翔 张静 +4 位作者 李灵巧 刘振丙 杨辉华 冯艳春 尹利辉 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第6期1782-1788,共7页
近红外光谱分析技术对检测样品无损伤且检测速度快、精度高,因此被广泛应用在了药品检测、石油化工等领域,尤其近年来机器学习和深度学习建模方法的深入应用使其具备了更准确的检测性能。然而,样品的近红外光谱数据具有比较高的维度且... 近红外光谱分析技术对检测样品无损伤且检测速度快、精度高,因此被广泛应用在了药品检测、石油化工等领域,尤其近年来机器学习和深度学习建模方法的深入应用使其具备了更准确的检测性能。然而,样品的近红外光谱数据具有比较高的维度且存在谱间重合、共线性和噪声等问题,对近红外光谱模型的性能产生消极影响,此时样品有效特征波长的筛选极为重要。为了提高近红外光谱定量和定性分析模型的准确性和可靠性,提出了一种近红外光谱变量选择方法,其结合了最小角回归(LAR)和竞争性自适应重加权采样(CARS)的优点,具有更优的性能。该方法利用LAR初步筛选样品全谱区的特征波长,接着利用CARS对筛选出来的特征波长进一步选择,从而有效去除无关特征波长。为验证该方法的有效性,从定量和定性分析两个方面评价该方法。在定量分析实验中,以FULL,LAR,CARS,SPA和UVE作为对比方法,以药品样品数据集为实例建立PLS回归分析模型,经LAR-CARS筛选出的变量建立的PLS模型在药品数据集表现出较高的预测决定系数和较低的预测标准偏差。在定性分析实验中,以SVM,ELM,SWELM和BP作为对比方法、不同比例训练集的药品数据集为实例建立分类模型,经LAR-CARS筛选出的变量建立的SVM分类模型精度最高达100%。从实验结果可见,LAR-CARS可有效的筛选出表征样品特征的波长,利用其筛选出的波长建立的定量、定性分析模型具有更好的鲁棒性,可用于样品光谱的特征波长筛选。 展开更多
关键词 近红外光谱 波长筛选 最小角回归 自适应加权采样
下载PDF
竞争性自适应重加权算法和相关系数法提取特征波长检测番茄叶片真菌病害 被引量:31
5
作者 王海龙 杨国国 +2 位作者 张瑜 鲍一丹 何勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2017年第7期2115-2119,共5页
基于竞争性自适应重加权算法(CARS)和相关系数法(CA)特征波长选择方法,提出了利用可见-近红外高光谱成像技术检测番茄叶片灰霉病的方法。首先获取380~1 023nm波段范围内80个染病和80个健康番茄叶片的高光谱图像,然后提取染病和健康叶片... 基于竞争性自适应重加权算法(CARS)和相关系数法(CA)特征波长选择方法,提出了利用可见-近红外高光谱成像技术检测番茄叶片灰霉病的方法。首先获取380~1 023nm波段范围内80个染病和80个健康番茄叶片的高光谱图像,然后提取染病和健康叶片感兴趣区域(ROI)的光谱反射率值,作为番茄叶片灰霉病鉴别模型的输入来建立支持向量机(SVM)鉴别模型,训练集和验证集的鉴别率都是100%。研究进一步通过CARS和CA提取特征波长,分别得到5个(554,694,696,738和880nm)和4个(527,555,571和633nm)特征波长,然后分别建立CARS-SVM和CA-SVM鉴别模型。结果显示,CARS-SVM模型中训练集和验证集的鉴别率都是100%,CA-SVM模型中训练集和验证集的鉴别率分别是91.59%和92.45%。以上结果说明了从可见-近红外高光谱图像中提取的光谱反射率值用于检测番茄叶片的灰霉病是可行的。 展开更多
关键词 高光谱成像技术 竞争自适应加权算法 相关系数法 支持向量机 番茄 灰霉病
下载PDF
中红外光谱技术结合竞争性自适应重加权算法快速分析白酒风味组分 被引量:3
6
作者 宋艳 杨洋 +4 位作者 张学平 许驰 王毓 蔡亮 李子文 《中国酿造》 CAS 北大核心 2022年第12期230-234,共5页
采用中红外光谱分析技术结合竞争性自适应重加权算法(CARS)对浓香型白酒基酒中的乳酸乙酯和乙酸乙酯的特征波长变量进行筛选后,建立偏最小二乘法(PLS)模型,并对其进行验证。结果表明,采用中红外光谱分析技术剔除明显噪声区域建立的PLS... 采用中红外光谱分析技术结合竞争性自适应重加权算法(CARS)对浓香型白酒基酒中的乳酸乙酯和乙酸乙酯的特征波长变量进行筛选后,建立偏最小二乘法(PLS)模型,并对其进行验证。结果表明,采用中红外光谱分析技术剔除明显噪声区域建立的PLS模型效果较好,而经CARS法进行特征波长选择后建立的CARS-PLS模型效果优于PLS模型,乙酸乙酯和乳酸乙酯的CARS-PLS模型相关系数R^(2)分别为0.995、0.989,预测均方根误差(RMSEP)分别为12.80、4.54,相对分析误差(RPD)分别为8.78及8.60,模型经独立验证均取得了较高的预测精度,验证数据相关系数R^(2)分别为0.994及0.992,RMSEP分别为13.55及4.86。该模型有较高的准确度及稳定性,能够用于白酒基酒中的乳酸乙酯和乙酸乙酯的快速分析,可为白酒酿造过程的质量把控提供技术方法。 展开更多
关键词 竞争自适应加权变量算法 白酒基酒 中红外光谱分析技术 波长变量选择 定量分析
下载PDF
基于CARS和1D-CNN联合的XRF土壤重金属超标分析方法研究
7
作者 杨婉琪 李智琪 +2 位作者 李福生 吕树彬 樊佳婧 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期670-674,共5页
随着社会现代化进程的迈进,愈加频繁的人类活动加剧了土壤重金属污染。当土壤中重金属元素含量超过风险筛选值时,会经过食物链摄入人体,过量的重金属累积对人体健康造成损害。筛选出具有重金属污染风险的土壤是治理土壤污染的重要环节... 随着社会现代化进程的迈进,愈加频繁的人类活动加剧了土壤重金属污染。当土壤中重金属元素含量超过风险筛选值时,会经过食物链摄入人体,过量的重金属累积对人体健康造成损害。筛选出具有重金属污染风险的土壤是治理土壤污染的重要环节。采用X射线荧光(XRF)光谱仪获取了59份国家标准土壤样品的光谱数据,然后对其进行小波阈值去噪和迭代离散小波变换本底扣除等预处理;运用基于竞争性自适应重加权采样(CARS)算法对土壤中的重金属元素进行谱线筛选;将筛选后的结果作为模型的输入,通过建立1D-CNN模型预测土壤样本是否具有重金属污染的风险。实验结果显示,通过CARS算法采样后的特征通道数大幅度减少,Ni、Cu、As、Pb元素从原来的2048个特征点分别减少为37、53、37、45个,为原来通道数的1.81%~2.59%。相较于不筛选和连续投影(SPA)筛选方法,结合CARS算法的1D-CNN模型在判断土壤样品是否有Ni、Cu、As、Pb元素污染风险时的准确率分别可以达到96.67%,93.22%,91.67%,88.33%。经CARS筛选,1D-CNN比偏最小二乘回归(PLSR)方法在预测准确性方面有明显优势。提出的CARS-1D-CNN算法在提高模型预测准确率的同时减少了模型的计算量,对于XRF光谱土壤重金属元素污染风险筛选具有较好的理论指导和应用价值。 展开更多
关键词 X射线荧光光谱 金属 竞争自适应加权采样 一维卷积神经网络
下载PDF
近红外光谱结合竞争性自适应重加权采样算法用于人工牛黄的质量分析研究 被引量:10
8
作者 石岩 孙冬梅 +2 位作者 熊婧 魏锋 马双成 《中国药学杂志》 CAS CSCD 北大核心 2018年第14期1216-1221,共6页
目的对人工牛黄近红外光谱的特征波长进行分析和研究。方法使用竞争性自适应重加权采样算法(CARS),分别从定性和各定量指标的角度,优化筛选出近红外光谱的特征波长变量。结果筛选出的特征波长数目仅为全变量的0.48%~4.44%,所构建的模型... 目的对人工牛黄近红外光谱的特征波长进行分析和研究。方法使用竞争性自适应重加权采样算法(CARS),分别从定性和各定量指标的角度,优化筛选出近红外光谱的特征波长变量。结果筛选出的特征波长数目仅为全变量的0.48%~4.44%,所构建的模型相比于近红外光谱全波长构建的模型来说,不仅变量数量大幅度减少,而且评价模型的指标参数更佳。结论该方法适用于人工牛黄的质量评价与控制。 展开更多
关键词 人工牛黄 近红外光谱 竞争自适应加权采样算法 胆汁酸 偏最小二乘回归
原文传递
近红外光谱技术结合竞争自适应重加权采样算法用于中药定量分析 被引量:8
9
作者 聂黎行 戴忠 +2 位作者 马双成 张晓楠 解素花 《中国实验方剂学杂志》 CAS CSCD 北大核心 2017年第11期45-49,共5页
目的:基质复杂、谱带重叠严重,影响了中药近红外定量模型的准确性。为解决以上问题,探讨竞争自适应重加权采样(Competitive adaptive reweighted sampling,CARS)变量筛选方法在中药材、中药提取物和中成药的定量分析中的应用。方法:采... 目的:基质复杂、谱带重叠严重,影响了中药近红外定量模型的准确性。为解决以上问题,探讨竞争自适应重加权采样(Competitive adaptive reweighted sampling,CARS)变量筛选方法在中药材、中药提取物和中成药的定量分析中的应用。方法:采集葛根药材、葛根提取物和愈风宁心滴丸的近红外漫反射光谱,测定葛根素含量。分别优化光谱前处理方式,剔除奇异样本后,运用CARS法筛选出的相关变量,建立偏最小二乘法(PLS)校正模型。结果:原料、中间体和制剂的定量模型交互验证均方差(RMSECV)分别为0.35%,1.76%,0.54%,与基于全光谱建立的模型比较,原料、中间体和制剂的CARS-PLS模型的预测准确度均有提高。结论:竞争自适应重加权采样变量筛选方法可以提高模型的预测能力,并有效简化运算过程,为中药的快速、无损检测提供了新的思路。 展开更多
关键词 近红外光谱 愈风宁心滴丸 葛根提取物 葛根 定量分析 竞争自适应加权采样
原文传递
激光诱导击穿光谱结合竞争自适应重加权采样算法对猪饲料中铜元素的定量分析 被引量:8
10
作者 刘珊珊 张俊 +3 位作者 林思寒 刘木华 黎静 潘作栋 《激光与光电子学进展》 CSCD 北大核心 2018年第2期457-463,共7页
饲料中添加铜元素对猪生长速度的促进效果明显,因而铜元素在猪饲料中的超标情况非常普遍,但其带来的危害也非常严重。利用共线双脉冲激光诱导击穿光谱(DP-LIBS)技术对猪饲料中的铜元素进行快速定量分析,采用竞争自适应重加权采样(CARS)... 饲料中添加铜元素对猪生长速度的促进效果明显,因而铜元素在猪饲料中的超标情况非常普遍,但其带来的危害也非常严重。利用共线双脉冲激光诱导击穿光谱(DP-LIBS)技术对猪饲料中的铜元素进行快速定量分析,采用竞争自适应重加权采样(CARS)算法筛选出与猪饲料中铜元素相关的22个重要变量,压缩率为1.1%;基于筛选出来的22个重要波长变量,利用偏最小二乘(PLS)回归方法建立猪饲料中铜元素含量的预测模型,并对预测集猪饲料样品中的铜元素含量进行预测。结果表明:与全光谱-PLS模型相比,CARS-PLS模型具有更高的预测精度和预测能力,模型相关系数、交叉验证均方根误差、平均相对误差分别为0.978、19.25、5.59%。CARS算法可以有效地优化猪饲料中铜元素的激光诱导击穿光谱在线检测模型,并可以提高模型的预测精度。 展开更多
关键词 光谱学 激光诱导击穿光谱 猪饲料 竞争自适应加权采样算法
原文传递
基于自适应正则化的无偏场景图生成方法
11
作者 李浩晨 曹付元 乔世昌 《计算机科学》 CSCD 北大核心 2023年第10期104-111,共8页
场景图生成旨在给定一张图片,通过目标检测模块得到实体和实体间关系的视觉三元组形式,即主语、关系和宾语,构建语义结构化表示。场景图可应用于图像检索和视觉问答等下游任务。然而,由于数据集中的实体间关系呈长尾分布,因此现有模型... 场景图生成旨在给定一张图片,通过目标检测模块得到实体和实体间关系的视觉三元组形式,即主语、关系和宾语,构建语义结构化表示。场景图可应用于图像检索和视觉问答等下游任务。然而,由于数据集中的实体间关系呈长尾分布,因此现有模型在预测关系时更偏向于粗粒度的头部关系。这样的场景图无法对下游任务起到辅助性作用。以往工作普遍采用再平衡策略,如重采样和重加权的方法,来解决长尾问题。但模型反复学习尾部关系样本,易出现过拟合现象。为了解决上述问题,文中提出了一种自适应正则化无偏场景图生成方法。具体来说,该方法通过设计一个基于先验关系频率的正则项,自适应地调整模型全连接分类器权重,从而实现对模型的平衡预测。所提方法在场景图VG(Visual Genome)数据集上进行了实验,实验结果表明,该方法不仅能防止模型过拟合,也能缓解关系长尾分布问题对场景图生成的负面影响,且最先进的场景图生成方法在结合所提方法后能更有效地改善无偏场景图生成的性能。 展开更多
关键词 场景图 长尾分布 采样 加权 自适应正则化
下载PDF
基于竞争适应重加权采样算法耦合机器学习的土壤含水量估算 被引量:28
12
作者 葛翔宇 丁建丽 +3 位作者 王敬哲 王飞 蔡亮红 孙慧兰 《光学学报》 EI CAS CSCD 北大核心 2018年第10期385-392,共8页
土壤含水量是干旱区地表水-热-溶质耦合运移的关键指标;以干旱区典型样点实测土壤含水量及其室内可见光-近红外光谱数据作为数据集,通过蒙特卡罗交叉验证确定77个有效样本;基于竞争适应重加权采样算法筛选出最优光谱变量子集,利用3种机... 土壤含水量是干旱区地表水-热-溶质耦合运移的关键指标;以干旱区典型样点实测土壤含水量及其室内可见光-近红外光谱数据作为数据集,通过蒙特卡罗交叉验证确定77个有效样本;基于竞争适应重加权采样算法筛选出最优光谱变量子集,利用3种机器学习方法——BP神经网络、随机森林回归和极限学习机建立土壤含水量预测模型,进而实现土壤含水量估算模型的优选。结果表明:竞争适应重加权采样算法能有效剔除无关变量,从2151个光谱波段中优选出20个特征波段,其中R1848与土壤含水量的最大相关系数为0.531;引入偏最小二乘模型和机器学习方法进行对比,分析发现机器学习方法的预测结果比偏最小二乘模型更高;分析比较BP神经网络、随机森林回归和极限学习机的建模结果可知:极限学习机模型建模在机器学习方法中的效果最佳,决定系数R2=0.918,均方根误差RMSE=0.015,相对分析误差RPD=3.123,四分位数间隔RPIQ=3.325;机器学习能显著提升光谱建模反演土壤含水量的精度和稳定性,显示出其在非线性问题中具有很强的透析力和较好的模型稳健性,针对干旱区土壤水分的精准预测和定量估算具有可行性,可为干旱区土壤墒情、精准农业等研究提供科学参考。 展开更多
关键词 光谱学 土壤含水量估算 机器学习 竞争适应加权采样算法 极限学习机 随机森林
原文传递
ZY1-02DAHSI影像归一化阴影植被指数NSVI的波段选择及其构建
13
作者 许章华 陈玲燕 +6 位作者 项颂阳 邓西鹏 李一帆 俞辉 贺安琪 李增禄 郭孝玉 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第9期2626-2637,共12页
高光谱影像具有连续的地物光谱信息,在阴影检测方面具有巨大的潜力,而波段冗余度高需进行波段优选。归一化阴影植被指数(NSVI)能够扩大光谱差异,在高光谱影像中应用NSVI将更有效地识别阴影。资源一号02D卫星是我国首颗自主研发并成功运... 高光谱影像具有连续的地物光谱信息,在阴影检测方面具有巨大的潜力,而波段冗余度高需进行波段优选。归一化阴影植被指数(NSVI)能够扩大光谱差异,在高光谱影像中应用NSVI将更有效地识别阴影。资源一号02D卫星是我国首颗自主研发并成功运行的高光谱业务卫星,数据信噪比大、覆盖能力强,对该高光谱影像进行准确的阴影检测具有重要意义。以ZY1-02DAHSI影像为试验数据,提取并分析明亮区植被、阴影区植被及水体的光谱反射率;结合竞争自适应重加权采样(CARS)和连续投影算法(SPA)筛选能够有效区分典型地物的主要波段,综合考虑算法的特性进一步选出特征波段构建NSVI;通过步长法确定最佳阈值对影像进行分类,从像元值分布情况、分类精度和光谱增强效果等对比出构建NSVI的最佳波段,并结合不同的阴影指数、波段和影像进行综合评价,验证该方法的意义及普适性。结果表明:波段32和波段73是构建NSVI的最佳波段,分别对应红光波段和近红外波段;不同波段构建的NSVI分类精度均高于90%,由最佳波段构建的NSVI分类精度为94.33%,Kappa系数为0.8328,分类效果最优;NSVI能够增强典型地物间的光谱差异并缓解归一化植被指数的“易饱和”现象,在该影像中因水体累积产生的小波峰有助于提取水体;在ZY1-02DAHSI影像中NSVI的分类效果优于归一化阴影指数和阴影指数,于另一景影像的分类精度也达到93.55%,Kappa系数为0.8167。由算法筛选出的波段具有一定的代表性,最佳波段构建的NSVI在ZY1-02DAHSI影像中具有较好的阴影检测能力,对高光谱影像阴影检测及构建植被指数具有一定的借鉴和参考意义。 展开更多
关键词 归一化阴影植被指数NSVI ZY1-02DAHSI影像 竞争自适应加权采样(CARS) 连续投影算法(SPA) 阴影检测
下载PDF
基于CWT-sCARS的土壤铜含量高光谱反演
14
作者 张世文 李唯佳 +2 位作者 李恩伟 朱曾红 孔晨晨 《蚌埠学院学报》 2024年第2期17-23,共7页
光谱变量的有效程度与土壤铜含量的反演精度密切相关。基于原始反射率以及不同分解尺度下的小波系数,本研究采用连续小波变换(CWT)算法、稳定性竞争自适应重加权采样(sCARS)算法和随机森林(RF)算法对土壤铜含量进行了反演与验证。研究... 光谱变量的有效程度与土壤铜含量的反演精度密切相关。基于原始反射率以及不同分解尺度下的小波系数,本研究采用连续小波变换(CWT)算法、稳定性竞争自适应重加权采样(sCARS)算法和随机森林(RF)算法对土壤铜含量进行了反演与验证。研究结果表明:连续小波变换可以有效提高光谱特征与土壤铜含量之间的相关性,不同分解尺度对应的最大相关系数中,最大值位于Scale 8分解尺度下1343 nm处,相关系数为0.60;使用sCARS算法可以显著减少特征变量的数量,结合CWT变换和sCARS算法可以显著减轻数据冗余,提高土壤Cu含量的反演精度。该研究可为利用高光谱遥感技术,快速、高精度反演土壤Cu含量提供重要参考。 展开更多
关键词 高光谱反演 连续小波变换 稳定性竞争自适应加权采样
下载PDF
基于高光谱技术的五味清浊制剂快速无损检测方法研究
15
作者 戴胜云 吴东雪 +5 位作者 黄瑞 刘杰 乔菲 魏锋 连超杰 郑健 《中国现代中药》 CAS 2024年第10期1790-1798,共9页
目的:采用高光谱技术结合化学计量学方法对蒙古族药五味清浊制剂中胡椒碱、桂皮醛和羟基红花黄色素A进行含量测定,实现快速、无损、全面的五味清浊制剂质量评估。方法:选取2023年度国家药品抽检计划抽检的五味清浊制剂样品33批次(五味... 目的:采用高光谱技术结合化学计量学方法对蒙古族药五味清浊制剂中胡椒碱、桂皮醛和羟基红花黄色素A进行含量测定,实现快速、无损、全面的五味清浊制剂质量评估。方法:选取2023年度国家药品抽检计划抽检的五味清浊制剂样品33批次(五味清浊散11批次、五味清浊丸22批次),采集其高光谱数据;对比多元散射校正、基线校正、标准正态变换、光谱转化、矢量归一化、光谱降噪、卷积平滑(9)结合一阶导数、卷积平滑(11)结合一阶导数、卷积平滑(9)结合二阶导数和卷积平滑(11)结合二阶导数10种光谱预处理方法,蒙特卡罗无信息变量消除法、竞争性自适应重加权采样法(CARS)2种变量筛选方法,偏最小二乘法、最小二乘法-支持向量机(LS-SVM)2种建模方法用于胡椒碱、桂皮醛和羟基红花黄色素A含量与高光谱数据定量校正模型时的性能。结果:采用CARS建立的胡椒碱和桂皮醛的LS-SVM模型预测能力全局最优,模型的相对预测偏差(RPD)分别为9.2、6.0,验证集相关系数(rpre)分别为0.9935、0.9852,说明模型验证集与测定值具有良好的非线性关系,模型预测效果良好。采用羟基红花黄色素A原始光谱建立的LS-SVM模型性能全局最优,RPD和rpre分别为3.7、0.9762。结论:采用高光谱技术结合化学计量学方法可以快速测定五味清浊制剂中胡椒碱、桂皮醛和羟基红花黄色素A含量,方法操作简便,可为五味清浊制剂的质量控制提供参考。 展开更多
关键词 蒙古族药 五味清浊制剂 高光谱 变量筛选 蒙特卡罗无信息变量消除法 竞争自适应加权采样 偏最小二乘法 最小二乘法-支持向量机
下载PDF
基于近红外光谱技术的空苞山核桃快速识别 被引量:3
16
作者 俞储泽 翁定康 +1 位作者 曹烁森 孙通 《中国食品学报》 EI CAS CSCD 北大核心 2024年第2期292-302,共11页
空苞山核桃是指果实没有种仁或者发育受阻的山核桃,严重影响山核桃产品品质。为实现空苞山核桃的快速无损识别,利用2种近红外检测装置在200~1160 nm波长范围采集带壳山核桃样本的光谱,采用8种预处理方法进行光谱预处理,利用竞争自适应... 空苞山核桃是指果实没有种仁或者发育受阻的山核桃,严重影响山核桃产品品质。为实现空苞山核桃的快速无损识别,利用2种近红外检测装置在200~1160 nm波长范围采集带壳山核桃样本的光谱,采用8种预处理方法进行光谱预处理,利用竞争自适应重加权采样(CARS)方法筛选空苞山核桃的特征波长变量,最后应用线性判别分析(LDA)、二次判别分析(QDA)和马氏距离判别分析(MDA)建立空苞和正常山核桃的分类模型。结果表明,使用检测装置1所建立的空苞山核桃分类模型性能优于检测装置2的分类模型,经多元散射校正(MSC)预处理后建立的分类模型的识别结果最好,LDA、QDA及MDA模型的特异性、敏感性和正确率均为1,优于其它预处理方法建立的分类模型。经CARS变量筛选后,建模所用的光谱变量数目大大减少,有效简化了分类模型,而模型性能仍与全波长模型性能持平。本文为空苞山核桃的快速、无损识别提供了一种可行的方法。 展开更多
关键词 山核桃 近红外光谱 空苞 竞争自适应加权采样
下载PDF
化学计量学方法选取对烟草含水率近红外分析准确度的影响
17
作者 俞思名 姚燕 +4 位作者 刘颖 刘穗君 潘登 蔡晋辉 朱颖颖 《中国计量大学学报》 2024年第1期28-34,共7页
目的:研究不同化学计量学方法对烟草含水率近红外分析准确度的影响。方法:比较不同预处理方法(平滑、一阶、二阶、标准正态变量(SNV)和多元散射校正(MSC)及其组合)以及不同波长筛选方法(基于水分波段、基于波长区间、基于波长点)对预测... 目的:研究不同化学计量学方法对烟草含水率近红外分析准确度的影响。方法:比较不同预处理方法(平滑、一阶、二阶、标准正态变量(SNV)和多元散射校正(MSC)及其组合)以及不同波长筛选方法(基于水分波段、基于波长区间、基于波长点)对预测模型性能的影响。结果:仅对数据进行SNV、MSC、MSC+一阶、MSC+SNV、SNV+一阶预处理的模型能够使不同程度的相对分析误差RPD提高,而其他方法则不同程度下降;在波长筛选方法方面,使用基于波长区间的方法能够获得较好的优化效果,经过变量筛选得到594个波长,为原波长数的27.26%,且能提高0.1336的RPD值。结论:不同的计量学方法会对烟草含水率分析准确度产生影响,对于此次数据,应采用MSC预处理方法及基于波长区间筛选方法对数据进行处理。 展开更多
关键词 预处理 水分波段 无信息变量消除法 竞争自适应加权采样
下载PDF
拉曼光谱结合机器学习对植物油的分类鉴别
18
作者 苏东斌 秦嘉桧 李开开 《食品与发酵工业》 CAS CSCD 北大核心 2024年第6期274-281,共8页
该研究采集了六类(38个品牌)常见植物油的551份拉曼光谱,并根据光谱数据分别建立了正交偏最小二乘判别和支持向量机模型,对比了连续投影法和竞争性自适应重加权采样法对模型识别正确率的影响。基于算法改进的偏最小二乘判别模型的总体... 该研究采集了六类(38个品牌)常见植物油的551份拉曼光谱,并根据光谱数据分别建立了正交偏最小二乘判别和支持向量机模型,对比了连续投影法和竞争性自适应重加权采样法对模型识别正确率的影响。基于算法改进的偏最小二乘判别模型的总体预测准确率为82.53%、83.13%,低于基于全光谱数据建立的偏最小二乘判别模型。竞争性自适应重加权采样法结合支持向量机对玉米油、橄榄油、葵花籽油和芝麻油的品牌分类测试集正确率均达到100%;椰子油和花生油的测试集正确率为22.22%、63.64%。两类特征提取算法均可以减少建立分类模型所需的变量数目和计算资源,但以提取后变量建立分类模型可能会导致识别正确率下降。在解决样本间相似度较高的多分类问题时,支持向量机模型优于正交偏最小二乘判别模型。正确率差异可能和生产商所使用的生产工艺以及植物油原料相关。面对案件侦办中品牌种类多样的油脂物证,基于拉曼光谱分析和特征提取算法的支持向量机模型可为可食用植物油的无损快速检验提供一定的参考与借鉴。 展开更多
关键词 植物油 拉曼光谱 机器学习 连续投影法 竞争自适应加权采样
下载PDF
基于北方苍鹰优化核极限学习机的玉米品种鉴别研究
19
作者 倪金 索丽敏 +1 位作者 刘海龙 赵蕊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1584-1590,共7页
玉米作为我国种植最为广泛的农作物,其产量对于我国粮食安全具有重大意义,由于不同品种具有不同的特性,根据种植条件科学选种能够很大限度上提高产量并且降低生产成本,但不同玉米种子外观极其相似,导致科学选种工作产生了一定难度。该... 玉米作为我国种植最为广泛的农作物,其产量对于我国粮食安全具有重大意义,由于不同品种具有不同的特性,根据种植条件科学选种能够很大限度上提高产量并且降低生产成本,但不同玉米种子外观极其相似,导致科学选种工作产生了一定难度。该研究基于近红外光谱技术结合核极限学习机(KELM)针对玉米品种分类问题构建鉴别模型,利用甜糯黄玉米、甜妃、昌甜、金色超人、香甜5号五种玉米种子,每种取(13±0.5)g作为一份样品,共计126个样品作为研究对象,对采集的近红外光谱数据进行标准正态变量变换(SNV)处理后采用竞争性自适应重加权采样法(CARS)对数据集进行降维。按照5∶1的比例将样本随机分为训练集和测试集,探讨北方苍鹰优化算法(NGO)对KELM模型性能的影响。分别使用NGO算法、粒子群算法(PSO)和灰狼算法(GWO)对KELM模型的两个重要参正则化参数C和高斯核函数γ进行寻优,选择五折交叉验证识别准确率最高时对应的C和γ作为建模参数,建立KELM分类模型。将各算法寻优后建立的KELM模型性能进行对比。实验发现,通过NGO算法寻优后建立的KELM模型性能高于其他两种算法优化的KELM模型,测试集识别准确率可达100%。在CARS降维的基础上分别建立CARS-NGO-KELM、CARS-PSO-KELM和CARS-GWO-KELM模型,结果表明,在面对降维后的数据时NGO算法仍能表现较好的性能,其测试集准确率和F 1值均达到了100%。为了验证样本数量对模型的影响,使用各品种样品数量同步后的共计90个样品重新训练KELM模型。结果表明,在同步各类样品数量后,各个模型在训练集和测试集上的表现均有提升。该研究在近红外光谱的基础上引入多种优化算法构建核极限学习机模型并将识别准确率提升至100%,实现了对玉米种子快速、无损、准确的品种鉴别,研究结果为玉米品种快速鉴别提供了一种新方法,同时也对监管部门具有一定的指导意义。 展开更多
关键词 近红外光谱 玉米 北方苍鹰 竞争自适应加权采样 核极限学习机
下载PDF
基于高光谱成像技术的糯玉米种子分类研究 被引量:2
20
作者 庄浩轩 魏明生 +2 位作者 王波 赵慕阶 陈化东 《现代农业研究》 2024年第1期51-57,共7页
为了快速、准确、无损地对糯玉米种子分类,采用可见-近红外(400~1000 nm)高光谱成像仪对5种糯玉米种子进行数据采集,使用一阶中心差分联合SG平滑对糯玉米种子的原始光谱数据进行预处理去噪,通过自优化竞争性自适应重加权采样算法筛选出5... 为了快速、准确、无损地对糯玉米种子分类,采用可见-近红外(400~1000 nm)高光谱成像仪对5种糯玉米种子进行数据采集,使用一阶中心差分联合SG平滑对糯玉米种子的原始光谱数据进行预处理去噪,通过自优化竞争性自适应重加权采样算法筛选出56个重要的特征波段,同时采用灰度共生矩阵和Sobel算子提取糯玉米种子的相关性、能量、同致性、相关熵、灰度熵和梯度熵等6种纹理特征,将光谱特征与纹理特征融合后构建支持向量机分类模型,分别用350个训练样本、150个测试样本和50个预测样本对模型进行训练、测试和预测分类,相应得到了准确率为98.50%、95.92%和94.00%的最佳结果,表明利用高光谱成像技术对糯玉米种子分类是可行的。 展开更多
关键词 高光谱成像技术 一阶中心差分 自优化 竞争自适应加权采样算法 灰度共生矩阵
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部