期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
一类Lotka-Volterra捕食-竞争扩散系统的概周期解 被引量:4
1
作者 孟新柱 董焕河 张宁 《数学研究》 CSCD 2004年第4期387-394,共8页
研究了一类带扩散项的 n种群 Lotka- volterra非自治捕食 -竞争系统 ,应用 Liapunov泛函方法得到系统持久生存和存在唯一全局渐近稳定正概周期解的新的充分条件 ,并举例说明定理的应用 .
关键词 N种群捕食-竞争扩散系统 持久生存 全局渐近稳定性 概周期解
下载PDF
脉冲-扩散竞争种群动力系统的研究 被引量:4
2
作者 窦家维 李开泰 《西安交通大学学报》 EI CAS CSCD 北大核心 2003年第2期208-210,218,共4页
研究了由脉冲 扩散方程组描述的具有即时收获或放养的两竞争种群动力系统的数学模型.建立了研究模型的单调方法,该方法定义了系统的上下解,证明了上下解的有序性,上下解的存在可以保证解的存在,且可利用上下解对解进行估计.获得了利用... 研究了由脉冲 扩散方程组描述的具有即时收获或放养的两竞争种群动力系统的数学模型.建立了研究模型的单调方法,该方法定义了系统的上下解,证明了上下解的有序性,上下解的存在可以保证解的存在,且可利用上下解对解进行估计.获得了利用脉冲常微分方程组作为控制系统,以它的解作为上下解的一些比较结果,以及系统具有渐近性、稳定性的条件.该模型的研究方法可应用于一般的拟单调非增系统,其研究结果对于定量描述和控制实际种群生态系统具有理论指导意义. 展开更多
关键词 脉冲-扩散竞争种群动力系统 脉冲-扩散方程组 上下解 存在-比较定理 渐近性 稳定性 脉冲偏微分方程
下载PDF
一类交错扩散型Lotka-Volterra竞争系统的全局稳定性
3
作者 汪建俏 《嘉兴学院学报》 2022年第6期12-20,共9页
在空间扩散、平流和资源分布都具有空间异质的假设下,考虑其对某个两物种Lotka-Volterra竞争-扩散-平流系统的综合影响:得到了Logistic模型正平衡解的存在性和全局稳定性;引入与平流项相关的加权李雅普诺夫函数研究带有平流项的非均匀... 在空间扩散、平流和资源分布都具有空间异质的假设下,考虑其对某个两物种Lotka-Volterra竞争-扩散-平流系统的综合影响:得到了Logistic模型正平衡解的存在性和全局稳定性;引入与平流项相关的加权李雅普诺夫函数研究带有平流项的非均匀环境下非均匀稳态的全局稳定性. 展开更多
关键词 Lotka-Volterra竞争-扩散-平流系统 全局稳定性 李雅普诺夫函数法
下载PDF
具有常数收获率的竞争—扩散问题解的性态
4
作者 容跃堂 《纺织基础科学学报》 1992年第1期61-66,共6页
讨论牛曼边界条件下具有常数收获率的竞争—扩散问题解的性态,得到当收获率满足当条件时,种群u将在有限时刻被消灭。
关键词 竞争-扩散 常数收获率 有限时刻 消灭
下载PDF
具有周期系数的捕食—竞争扩散系统的持久与全局渐近稳定性 被引量:3
5
作者 孟新柱 王学蕾 《潍坊学院学报》 2002年第2期11-16,共6页
本文研究了一类带扩散项具有周期系数的非自治捕食 竞争系统 ,该系统由m +1个斑块组成 ,食饵种群之间竞争 ,并可以在m个斑块之间扩散 ,而捕食者之间存在竞争 ,并只能限定在自己斑块内不能扩散 ,得到系统正解的有界性 ,周期解存在唯一性... 本文研究了一类带扩散项具有周期系数的非自治捕食 竞争系统 ,该系统由m +1个斑块组成 ,食饵种群之间竞争 ,并可以在m个斑块之间扩散 ,而捕食者之间存在竞争 ,并只能限定在自己斑块内不能扩散 ,得到系统正解的有界性 ,周期解存在唯一性和全局渐近稳定性的条件。 展开更多
关键词 捕食-竞争扩散系统 周期系统 有界性 全局吸引 周期解
下载PDF
Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems 被引量:3
6
作者 WANG ZhiCheng LI WanTong RUAN ShiGui 《Science China Mathematics》 SCIE CSCD 2016年第10期1869-1908,共40页
In the one-dimensional space, traveling wave solutions of parabolic differential equations have been widely studied and well characterized. Recently, the mathematical study on higher-dimensional traveling fronts has a... In the one-dimensional space, traveling wave solutions of parabolic differential equations have been widely studied and well characterized. Recently, the mathematical study on higher-dimensional traveling fronts has attracted a lot of attention and many new types of nonplanar traveling waves have been observed for scalar reaction-diffusion equations with various nonlinearities. In this paper, by using the comparison argument and constructing appropriate super- and subsolutions, we study the existence, uniqueness and stability of three- dimensional traveling fronts of pyramidal shape for monotone bistable systems of reaction-diffusion equations in R3. The pyramidal traveling fronts are characterized as either a combination of planar traveling fronts on the lateral surfaces or a combination of two-dimensional V-form waves on the edges of the pyramid. In particular, our results are applicable to some important models in biology, such as Lotk,u-Volterra competition-diffusion systems with or without spatio-temporal delays, and reaction-diffusion systems of multiple obligate mutualists. 展开更多
关键词 reaction-diffusion systems BISTABILITY pyramidal traveling fronts EXISTENCE UNIQUENESS STABILITY
原文传递
Stability analysis of n-species Lotka-Volterra almost periodic competition models with grazing rates and diffusions 被引量:1
7
作者 Yi-Jin Zhang Chang-You Wang 《International Journal of Biomathematics》 2014年第2期1-11,共11页
In this pape, almost periodic solution of a n-species Lotka-Volterra competition system with grazing rates and diffusions is investigated. By using the method of upper and lower solutions anti Schauder fixed point the... In this pape, almost periodic solution of a n-species Lotka-Volterra competition system with grazing rates and diffusions is investigated. By using the method of upper and lower solutions anti Schauder fixed point theorem as well as Lyapunov stability theory, we give sufficient conditions under which the strictly positive space homogeneous almost perilodic solution of the system is globally asymptotically stable. Moreover, some numerical simulations are given to validate our theoretical analysis. 展开更多
关键词 Grazing rate competition model diffusion almost periodic solution stability.
原文传递
ENTIRE SOLUTIONS FOR LOTKA-VOLTERRA COMPETITION-DIFFUSION MODEL 被引量:3
8
作者 XIAOHUAN WANG GUANGYING LV 《International Journal of Biomathematics》 2013年第4期21-33,共13页
This paper is concerned with the existence of entire solutions of Lotka Volterra competition-diffusion model. Using the comparing argument and sub-super solutions method, we obtain the existence of entire solutions wh... This paper is concerned with the existence of entire solutions of Lotka Volterra competition-diffusion model. Using the comparing argument and sub-super solutions method, we obtain the existence of entire solutions which behave as two wave fronts coming from the both sides of x-axis, where an entire solution is meant by a classical solution defined for all space and time variables. 展开更多
关键词 Reaction-diffusion systems entire solutions traveling wave fronts super-sub solutions.
原文传递
Traveling wave solutions for a diffusive predator-prey model with predator saturation and competition
9
作者 Lin Zhu Shi-Liang Wu 《International Journal of Biomathematics》 2017年第6期231-253,共23页
The purpose of this paper is to study the traveling wave solutions of a diffusive predator- prey model with predator saturation and competition functional response. The system admits three equilibria: a zero equilibr... The purpose of this paper is to study the traveling wave solutions of a diffusive predator- prey model with predator saturation and competition functional response. The system admits three equilibria: a zero equilibrium E0, a boundary equilibrium E1 and a posi- tive equilibrium E. under some conditions. We establish the existence of two types of traveling wave solutions which connect E0 and E. and E1 and E., respectively. Our main arguments are based on a simplified shooting method, a sandwich method and constructions of appropriate Lyapunov functions. Our particular interest is to investi- gate the oscillation of both types of traveling wave solutions when they approach the positive equilibrium. 展开更多
关键词 Diffusive predator prey model traveling wave solution shooting argument Wazewski's set LaSalle's invariance principle.
原文传递
BIFURCATION AND SPATIOTEMPORAL PATTERNS IN A HOMOGENEOUS DIFFUSION-COMPETITION SYSTEM WITH DELAYS
10
作者 JIA-FANG ZHANG WAN-TONG LI XIANG-PING YAN 《International Journal of Biomathematics》 2012年第6期19-41,共23页
A competitive LotkaVolterra reactiondiffusion system with two delays subject to Neumann boundary conditions is considered. It is well known that the positive con stant steady state of the system is globally asymptotic... A competitive LotkaVolterra reactiondiffusion system with two delays subject to Neumann boundary conditions is considered. It is well known that the positive con stant steady state of the system is globally asymptotically stable if the interspecies competition is weaker than the intraspecies one and is unstable if the interspecies com petition dominates over the intraspecies one. If the latter holds, then we show that Hopf bifurcation can occur as the parameters (delays) in the system cross some critical val ues. In particular, we prove that these Hopf bifurcations are all spatially homogeneous if the diffusive rates are suitably large, which has the same properties as Hopf bifur cation of the corresponding delayed system without diffusion. However, if the diffusive rates are suitably small, then the system generates the spatially nonhomogeneous Hopf bifurcation. Furthermore, we derive conditions for determining the direction of spatially nonhomogeneous Hopf bifurcations and the stability of bifurcating periodic solutions. These results indicate that the diffusion plays an important role for deriving the complex spatiotemporal dynamics. 展开更多
关键词 LotKa-Volterra competition system time delay spatial diffusion Hopf bifur-cation periodic solution.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部