Triple-negative breast cancer is an aggressive subtype that frequently develops resistance to chemotherapy. It is expected to develop new anti-tumor drugs through targeting the structure of G-quadruplexes of the genes...Triple-negative breast cancer is an aggressive subtype that frequently develops resistance to chemotherapy. It is expected to develop new anti-tumor drugs through targeting the structure of G-quadruplexes of the genes associated with this tumor. In this work, by targeting the 21-mer telomere G-quadruplex structure, compounds VB07 and VC02 were identified to stabilize the telomere G-quadruplex through structure-based high-throughput virtual screening. Cell cytotoxicity assay showed that VB07 and VC02 exhibited inhibitory effect on triple-negative breast cancer cells at the concentration of 5 μM. This study showed that structure-based high-throughput virtual screening was able to successfully identify the proper compounds targeting the telomere G-quadruplex, which exhibited inhibitory effects against the triple-negative breast cancer cells.展开更多
基金National Natural Science Foundation of China(Grant No.31701791,21732002,31672558 and 21502060)Huazhong Agricultural University Scientific&Technological Self-innovation Foundation(Grant No.2662017PY113,2015RC013 and 2662015PY208)Open fund of The State Key Laboratory of Bio-organic and Natural Products Chemistry,CAS(Grant No.SKLBNPC16343)。
文摘Triple-negative breast cancer is an aggressive subtype that frequently develops resistance to chemotherapy. It is expected to develop new anti-tumor drugs through targeting the structure of G-quadruplexes of the genes associated with this tumor. In this work, by targeting the 21-mer telomere G-quadruplex structure, compounds VB07 and VC02 were identified to stabilize the telomere G-quadruplex through structure-based high-throughput virtual screening. Cell cytotoxicity assay showed that VB07 and VC02 exhibited inhibitory effect on triple-negative breast cancer cells at the concentration of 5 μM. This study showed that structure-based high-throughput virtual screening was able to successfully identify the proper compounds targeting the telomere G-quadruplex, which exhibited inhibitory effects against the triple-negative breast cancer cells.