Ultrastructural changes in secondary wall formation of Phyllostachys pubescens Mazel fiber were investigated with transmission electron microscopy. Fiber developed initially with the elongation of cells containing...Ultrastructural changes in secondary wall formation of Phyllostachys pubescens Mazel fiber were investigated with transmission electron microscopy. Fiber developed initially with the elongation of cells containing ribosomes, mitochondria and Golgi bodies in the dense cytoplasm. During the wall thickening, the number of rough endoplasmic reticulum and Golgi bodies increased apparently. There were two kinds of Golgi vesicles, together with the ones from endoplasmic reticulum formed transport vesicles. Many microtubules were arranged parallel to the long axis of the cell adjacent to the plasmalemma. Along with the further development of fiber, polylamellate structure of the secondary wall appeared, with concurrent agglutination of chromatin in the nucleus, swelling and disintegration of organelles, while cortical microtubules were still arranged neatly against the inner side of plasmalemma. Lomasomes could be observed between the wall and plasmalemma. The results indicated that the organelles, such as Golgi bodies together with small vesicles, rough endoplasmic reticulum and lomasomes, played the key role in the thickening and lignification of the secondary wall of bamboo fiber, though cortical microtubules were correlative with the process as well.展开更多
The microbial flora in bamboo stump at different decomposition degree was studied. The results showed that the logarithmic values of bacterial concentrations ranged from 5.477 to 7.380; the logarithmic values of funga...The microbial flora in bamboo stump at different decomposition degree was studied. The results showed that the logarithmic values of bacterial concentrations ranged from 5.477 to 7.380; the logarithmic values of fungal concentrations ranged from 5.301 to 6.903; the logarithmic values of actinomycetes concentrations ranged from 5.740 to 7.000; the logarithmic values of cellulose-degrading bacterial concentrations ranged from 4.301 to 6.447; the logarithmic values of lignin-degrading bacterial concentrations ranged from 4.415 to 6.799. During the decomposition of bamboo stump, all the microorganisms grew rapidly at the initial stage; the logarithmic values of bacterial, fungal and actinomycetes concentrations changed constantly at the middle stage; and the logarithmic values were all higher at the late stage.There were assistance and competition among microorganism to certain extent. Understanding the decomposition rule of bamboo stump before its cutting down can provide some reference for the future decomposition of bamboo stump, and provide basic data for the isolation of microorganisms from bamboo stump at the species level.展开更多
Two direct dyes were applied to conventional viscose(CV)and bamboo viscose(BV)fibers,which were prepared from bamboo cellulose pulps,and the dyeing kinetics of two fibers were compared.Three kinetic equations,namely C...Two direct dyes were applied to conventional viscose(CV)and bamboo viscose(BV)fibers,which were prepared from bamboo cellulose pulps,and the dyeing kinetics of two fibers were compared.Three kinetic equations,namely Chrastil,Cegarra-Puente,and Vickerstaff,were used to fit the experimental dyeing rate points,showing that the best result was obtained by the Chrastil equation.BV fibers displayed slightly higher dyeing rates and dye adsorption values at initial stages,but a bit lower dye adsorption values at equilibrium than CV fibers.Furthermore,the dyeing of BV fibers exhibited lower activation energies and higher dyeing rate constants than that of CV fibers,and therefore showed slightly lower dependence on temperature.展开更多
文摘Ultrastructural changes in secondary wall formation of Phyllostachys pubescens Mazel fiber were investigated with transmission electron microscopy. Fiber developed initially with the elongation of cells containing ribosomes, mitochondria and Golgi bodies in the dense cytoplasm. During the wall thickening, the number of rough endoplasmic reticulum and Golgi bodies increased apparently. There were two kinds of Golgi vesicles, together with the ones from endoplasmic reticulum formed transport vesicles. Many microtubules were arranged parallel to the long axis of the cell adjacent to the plasmalemma. Along with the further development of fiber, polylamellate structure of the secondary wall appeared, with concurrent agglutination of chromatin in the nucleus, swelling and disintegration of organelles, while cortical microtubules were still arranged neatly against the inner side of plasmalemma. Lomasomes could be observed between the wall and plasmalemma. The results indicated that the organelles, such as Golgi bodies together with small vesicles, rough endoplasmic reticulum and lomasomes, played the key role in the thickening and lignification of the secondary wall of bamboo fiber, though cortical microtubules were correlative with the process as well.
基金Supported by Youth Innovation Fund of Hunan Academy of Forestry(2013LQJ09)~~
文摘The microbial flora in bamboo stump at different decomposition degree was studied. The results showed that the logarithmic values of bacterial concentrations ranged from 5.477 to 7.380; the logarithmic values of fungal concentrations ranged from 5.301 to 6.903; the logarithmic values of actinomycetes concentrations ranged from 5.740 to 7.000; the logarithmic values of cellulose-degrading bacterial concentrations ranged from 4.301 to 6.447; the logarithmic values of lignin-degrading bacterial concentrations ranged from 4.415 to 6.799. During the decomposition of bamboo stump, all the microorganisms grew rapidly at the initial stage; the logarithmic values of bacterial, fungal and actinomycetes concentrations changed constantly at the middle stage; and the logarithmic values were all higher at the late stage.There were assistance and competition among microorganism to certain extent. Understanding the decomposition rule of bamboo stump before its cutting down can provide some reference for the future decomposition of bamboo stump, and provide basic data for the isolation of microorganisms from bamboo stump at the species level.
基金National Key Technology R&D Program of the Chinese Ministry of Science and Technology,China(No.2007BAE41B04)
文摘Two direct dyes were applied to conventional viscose(CV)and bamboo viscose(BV)fibers,which were prepared from bamboo cellulose pulps,and the dyeing kinetics of two fibers were compared.Three kinetic equations,namely Chrastil,Cegarra-Puente,and Vickerstaff,were used to fit the experimental dyeing rate points,showing that the best result was obtained by the Chrastil equation.BV fibers displayed slightly higher dyeing rates and dye adsorption values at initial stages,but a bit lower dye adsorption values at equilibrium than CV fibers.Furthermore,the dyeing of BV fibers exhibited lower activation energies and higher dyeing rate constants than that of CV fibers,and therefore showed slightly lower dependence on temperature.