Due to the high cost of adsorbents and their thermal regeneration in recent years, much research has fo- cused on the search for cheaper adsorbents for treating wastewater from textile industry. The single component a...Due to the high cost of adsorbents and their thermal regeneration in recent years, much research has fo- cused on the search for cheaper adsorbents for treating wastewater from textile industry. The single component ad-sorption of an acidic dye, Acid Yellow 117, and a basic dye, Methylene Blue, onto several adsoroents-bamooo, waste wood, bamboo char, waste wood char, bamboo activated carbon, wood activated carbon and active carbon F400 were conducted. Based on a Langmuir analysis, the monolayer adsorption capacities were determined. Three of the adsorbents were selected for binary layer adsorption to check the multilayer concept and the potential application for better adsorbent usage. The two cheapest adsorbents, bamboo and wood are compared with the commer-cial activated carbon F400, and all three systems were successful.展开更多
In Japan, floods occur frequently in urban areas because non-infiltrating areas are seeing increased urbanization. To prevent floods, urban basins must improve the infiltration capacity and water retention of the whol...In Japan, floods occur frequently in urban areas because non-infiltrating areas are seeing increased urbanization. To prevent floods, urban basins must improve the infiltration capacity and water retention of the whole basin. There are several basic technologies for river basin management, such as infiltration trenches or rainwater storage. However, a method of soil amendment that prevents flood disasters has not been established. This study aims to evaluate the infiltration capacity of soil amendments using bamboo charcoal and humus. A constant-head infiltration test and rainfall simulation were conducted to evaluate the properties of the soil amendments. The constant-head infiltration test's results showed that soils mixed with 30% humus had the greatest potential for influencing initial and final infiltration rates, and the more the mixing rates of bamboo charcoal and humus were increased, the higher the water retention capacity. The results of the rainfall simulation showed that soils mixed with 30% humus had the highest final infiltration rates and lowest multiplication spillage. To reduce the runoff volume using soil amendment technology, it is important to delay overland flow, and the hydraulic properties of the soils mixed with bamboo charcoal and humus were as effective as those of granite soils.展开更多
文摘Due to the high cost of adsorbents and their thermal regeneration in recent years, much research has fo- cused on the search for cheaper adsorbents for treating wastewater from textile industry. The single component ad-sorption of an acidic dye, Acid Yellow 117, and a basic dye, Methylene Blue, onto several adsoroents-bamooo, waste wood, bamboo char, waste wood char, bamboo activated carbon, wood activated carbon and active carbon F400 were conducted. Based on a Langmuir analysis, the monolayer adsorption capacities were determined. Three of the adsorbents were selected for binary layer adsorption to check the multilayer concept and the potential application for better adsorbent usage. The two cheapest adsorbents, bamboo and wood are compared with the commer-cial activated carbon F400, and all three systems were successful.
文摘In Japan, floods occur frequently in urban areas because non-infiltrating areas are seeing increased urbanization. To prevent floods, urban basins must improve the infiltration capacity and water retention of the whole basin. There are several basic technologies for river basin management, such as infiltration trenches or rainwater storage. However, a method of soil amendment that prevents flood disasters has not been established. This study aims to evaluate the infiltration capacity of soil amendments using bamboo charcoal and humus. A constant-head infiltration test and rainfall simulation were conducted to evaluate the properties of the soil amendments. The constant-head infiltration test's results showed that soils mixed with 30% humus had the greatest potential for influencing initial and final infiltration rates, and the more the mixing rates of bamboo charcoal and humus were increased, the higher the water retention capacity. The results of the rainfall simulation showed that soils mixed with 30% humus had the highest final infiltration rates and lowest multiplication spillage. To reduce the runoff volume using soil amendment technology, it is important to delay overland flow, and the hydraulic properties of the soils mixed with bamboo charcoal and humus were as effective as those of granite soils.