期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于图像语义分割的真实毛笔笔触实时生成技术 被引量:1
1
作者 薛萍 李猛 +3 位作者 黄卫星 刘漫贤 杨颐 王健 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第4期590-598,共9页
书法在文化传承中占据重要地位,书法书写笔迹的生成也一直是计算机图形学的研究重点和难点.现存基于模型和经验的方法,由于建模难度大,大都将笔触表述为简单的几何图形并且缺少变化,难以真实还原毛笔书写的笔触和笔迹.使得现存书法笔迹... 书法在文化传承中占据重要地位,书法书写笔迹的生成也一直是计算机图形学的研究重点和难点.现存基于模型和经验的方法,由于建模难度大,大都将笔触表述为简单的几何图形并且缺少变化,难以真实还原毛笔书写的笔触和笔迹.使得现存书法笔迹生成软件仅仅用于娱乐,而难以上升到数字化书法教育层面.文中从计算机视觉的角度出发,通过4个相机获取毛笔的实时书写图像;针对Deeplabv3+语义分割算法无法有效地分割小尺寸类别的缺点进行优化,使用优化的Deeplabv3+算法提取图像中毛笔笔头等关键信息,并通过Hough变换和PnP位姿估计算法计算笔杆相对位姿;基于位姿信息矫正和融合各相机笔触图像,提出一种未知区域估计方法估计相机无法拍摄到的笔触区域.按照不同条件提取400多幅书写图像作为数据集并进行实验结果表明,优化后的Deeplabv3+算法平均交并比(mean intersection-over-union,mIOU)达到0.849,与优化前相比提升了0.117;在小尺寸类别上交并比(intersection-over-union,IOU)达到0.59,提升了0.473.在保证实时性的前提下,最终生成的笔触与传统基于模型和经验的方法相比,可以更加真实地还原书写时的笔触,并避免对毛笔进行复杂的建模,为笔迹生成研究提供一种新的思路. 展开更多
关键词 语义分割 深度卷积神经网络 笔迹生成 毛笔笔触生成
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部