期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Matlab在方程求解中的应用与编程 被引量:3
1
作者 明廷堂 《电脑编程技巧与维护》 2018年第3期148-157,共10页
符号方程包含代数方程和微分方程,在数学中具有极其重要的地位,其求解理论经历了漫长的探索和深化过程。从最初的代入和加减消元法,到数值计算中的牛顿迭代法、高斯消元法,最后到微分方程的求解理论,Matlab为符号方程的求解提供了强有... 符号方程包含代数方程和微分方程,在数学中具有极其重要的地位,其求解理论经历了漫长的探索和深化过程。从最初的代入和加减消元法,到数值计算中的牛顿迭代法、高斯消元法,最后到微分方程的求解理论,Matlab为符号方程的求解提供了强有力的支持。 展开更多
关键词 符号方程 线性方程 超越方程 微分方程 解析解 数值解
下载PDF
非线性代数方程的探讨
2
作者 虞海磊 《数学学习与研究》 2010年第17期112-112,共1页
近几十年来,随着数学研究本身的发展和大型计算机的出现及完善,各种非线性问题日益引起科学家和工程技术人员的兴趣和重视.特别是在近代物理和科学工程计算中的一些关键问题,归根结底都依赖于某些特定的非线性方程的求解.所以无论... 近几十年来,随着数学研究本身的发展和大型计算机的出现及完善,各种非线性问题日益引起科学家和工程技术人员的兴趣和重视.特别是在近代物理和科学工程计算中的一些关键问题,归根结底都依赖于某些特定的非线性方程的求解.所以无论在理论研究方面,还是在实际应用中,非线性方程的求解都占有非常重要的地位.本文所提出的主要基于MATLAB程序设计教程,介绍了非线性代数方程和非线性微分方程求解的几种方法. 展开更多
关键词 非线性代数 符号方程 数值解法 MATLAB
下载PDF
非线性微分方程求解的探讨
3
作者 虞海磊 《数学学习与研究》 2010年第19期67-67,共1页
近几十年来,随着数学研究本身的发展和大型计算机的出现及完善,各种非线性问题目益引起科学家和工程技术人员的兴趣和重视.特别是在近代物理和科学工程计算中的一些关键问题,归根结底都依赖于某些特定的非线性方程的求解.所以无论... 近几十年来,随着数学研究本身的发展和大型计算机的出现及完善,各种非线性问题目益引起科学家和工程技术人员的兴趣和重视.特别是在近代物理和科学工程计算中的一些关键问题,归根结底都依赖于某些特定的非线性方程的求解.所以无论在理论研究方面,还是在实际应用中,非线性方程的求解都占有非常重要的地位.本文所提出的主要基于MATLAB程序设计教程,介绍了非线性代数方程和非线性微分方程求解的几种方法. 展开更多
关键词 非线性微分 符号方程 积分因子 ode23
下载PDF
非线性微分方程求解的探讨
4
作者 虞海磊 《数学学习与研究》 2010年第20期89-89,共1页
近几十年来,随着数学研究本身的发展和大型计算机的出现及完善,各种非线性问题日益引起科学家和工程技术人员的兴趣和重视.特别是在近代物理和科学工程计算中的一些关键问题,归根结底都依赖于某些特定的非线性方程的求解.所以无论在理... 近几十年来,随着数学研究本身的发展和大型计算机的出现及完善,各种非线性问题日益引起科学家和工程技术人员的兴趣和重视.特别是在近代物理和科学工程计算中的一些关键问题,归根结底都依赖于某些特定的非线性方程的求解.所以无论在理论研究方面,还是在实际应用中,非线性方程的求解都占有非常重要的地位.本文所提出的主要基于MATLAB程序设计教程,介绍了非线性代数方程和非线性微分方程求解的几种方法. 展开更多
关键词 非线性微分 符号方程 ode23
下载PDF
Maple在求解Abel型微分方程中的应用
5
作者 陈誌敏 《湖北工业大学学报》 2006年第1期102-103,108,共3页
在Maple数学软件中,符号微分方程式的解算功能有了很大的增强,ode-pde程序包允许处理带有常数、非常数不变式的Abel型微分方程以及大量与可积类等价的微分方程.新的运算法则结合了与标准坐标转换技术等效的方法,从而解决了在许多应用领... 在Maple数学软件中,符号微分方程式的解算功能有了很大的增强,ode-pde程序包允许处理带有常数、非常数不变式的Abel型微分方程以及大量与可积类等价的微分方程.新的运算法则结合了与标准坐标转换技术等效的方法,从而解决了在许多应用领域内出现的相关求解问题. 展开更多
关键词 Abel型微分方程 等价类 不变式 可积类 符号微分方程式的解算 坐标转换
下载PDF
基于机器学习的河湖底泥机械脱水效果试验
6
作者 曾嘉辰 白鹤 +3 位作者 王盛 郭兵 严晓威 郝宇驰 《净水技术》 CAS 2023年第11期159-165,205,共8页
为研究河湖底泥含水率、加药量和泥浆污泥比阻对河湖底泥脱水固化的影响,文章分别利用BP神经网络和符号回归方程方法,建立了泥浆含水率、加药量、泥浆污泥比阻表达的泥饼含水率之间的预测模型。结果发现:两种机器学习方法得到的预测模... 为研究河湖底泥含水率、加药量和泥浆污泥比阻对河湖底泥脱水固化的影响,文章分别利用BP神经网络和符号回归方程方法,建立了泥浆含水率、加药量、泥浆污泥比阻表达的泥饼含水率之间的预测模型。结果发现:两种机器学习方法得到的预测模型相关性良好,均能够达到80%以上,基于4种常用的误差评价指标(MAE、MRE、MSE、RMSE)比较之下,BP神经网络预测结果准确度更优,误差均小于4%,且两种模型中输入参数中泥浆含水率、污泥比阻对最终泥饼含水率贡献程度相似且较大,占比均能够达到80%以上。研究建立的相关模型为河湖底泥机械脱水固化提供了可靠的预测和分析工具。 展开更多
关键词 河湖底泥 机器学习 BP神经网络 符号回归方程 底泥脱水
下载PDF
Conditional Symmetry Groups of Nonlinear Diffusion Equations with x-Dependent Convection and Absorption 被引量:13
7
作者 QUChang-Zheng ZHANGShun-Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第2期231-234,共4页
The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations ... The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations admit the second-order generalized conditional symmetries and the first-order sign-invariants on the solutions. Several types of different generalized conditional symmetries and first-order sign-invariants for the equations with diffusion of power law are obtained. Exact solutions to the resulting equations are constructed. 展开更多
关键词 symmetry group sign-invariant nonlinear diffusion equation exact solution
下载PDF
Infinite Sequence Soliton-Like Exact Solutions of (2 + 1)-Dimensional Breaking Soliton Equation 被引量:18
8
作者 Taogetusang Sirendaoerji 李姝敏 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第6期949-954,共6页
To seek new infinite sequence soliton-like exact solutions to nonlinear evolution equations (NEE(s)), by developing two characteristics of construction and mechanization on auxiliary equation method, the second ki... To seek new infinite sequence soliton-like exact solutions to nonlinear evolution equations (NEE(s)), by developing two characteristics of construction and mechanization on auxiliary equation method, the second kind of elliptie equation is highly studied and new type solutions and Backlund transformation are obtained. Then (2+ l )-dimensional breaking soliton equation is chosen as an example and its infinite sequence soliton-like exact solutions are constructed with the help of symbolic computation system Mathematica, which include infinite sequence smooth soliton-like solutions of Jacobi elliptic type, infinite sequence compact soliton solutions of Jacobi elliptic type and infinite sequence peak soliton solutions of exponential function type and triangular function type. 展开更多
关键词 the second kind of elliptic equation Backlund transformation nonlinear evolution equation infi-nite sequence soliton-like exact solution
下载PDF
Conservation Laws and Soliton Solutions for Generalized Seventh Order KdV Equation 被引量:3
9
作者 YAORuo-Xia XUGui-Qiong LIZhi-Bin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第4期487-492,共6页
With the assistance of the symbolic computation system Maple,rich higher order polynomial-type conservation laws and a sixth order t/x-dependent conservation law are constructed for a generalized seventh order nonline... With the assistance of the symbolic computation system Maple,rich higher order polynomial-type conservation laws and a sixth order t/x-dependent conservation law are constructed for a generalized seventh order nonlinear evolution equation by using a direct algebraic method.From the compatibility conditions that guaranteeing the existence of conserved densities,an integrable unnamed seventh order KdV-type equation is found.By introducing some nonlinear transformations,the one-,two-,and three-solition solutions as well as the solitary wave solutions are obtained. 展开更多
关键词 seventh order evolution equation conservation law soliton solution symbolic computation
下载PDF
A New Generalization of Extended Tanh—Function Method for Solving Nonlinear Evolution Equations 被引量:15
10
作者 ZHENGXue-Dong CHENYong LIBiao ZHANGHong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第6期647-652,共6页
Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equati... Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profile solitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions. 展开更多
关键词 nonlinear evolution equations exact solutions symbolic computation Riccati equation
下载PDF
Double Elliptic Equation Expansion Approach and Novel Solutions of (2+1)-Dimensional Break Soliton Equation 被引量:1
11
作者 SUN Wei-Kun CAO Nan-Bin SHEN Ya-Liang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第2期281-286,共6页
In this paper, by means of double elliptic equation expansion approach, the novel double nonlinear wave solutions of the (2+1)-dimensional break soliton equation are obtained. These double nonlinear wave solutions ... In this paper, by means of double elliptic equation expansion approach, the novel double nonlinear wave solutions of the (2+1)-dimensional break soliton equation are obtained. These double nonlinear wave solutions contain the double Jacobi elliptic function-like solutions, the double solitary wave-like solutions, and so on. The method is also powerful to some other nonlinear wave equations in (2+1) dimensions. 展开更多
关键词 break soliton equation symbolic computation double elliptic equations double soliton-like solution nonlinear wave solution
下载PDF
Symbolic Computations and Exact and Explicit Solutions of Some Nonlinear Evolution Equations in Mathematical Physics 被引量:1
12
作者 Turgut zis Imail Aslan 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第4期577-580,共4页
With the aid of symbolic computation system Mathematica, several explicit solutions for Fisher's equation and CKdV equation are constructed by utilizing an auxiliary equation method, the so called G′/G-expansion met... With the aid of symbolic computation system Mathematica, several explicit solutions for Fisher's equation and CKdV equation are constructed by utilizing an auxiliary equation method, the so called G′/G-expansion method, where the new and more general forms of solutions are also constructed. When the parameters are taken as special values, the previously known solutions are recovered. 展开更多
关键词 auxiliary equation method G′/G-expansion method traveling wave solutions fisher equation CKdV equation exact solution
下载PDF
Qualitative Algebra and Graph Theory Methods for Dynamic Trend Analysis of Continuous System 被引量:3
13
作者 张卫华 吴重光 王春利 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期308-315,共8页
Qualitative algebraic equations are the basis of qualitative simulation,which are used to express the dynamic behavior of steady-state continuous processes.When the values and operation of qualitative variables are re... Qualitative algebraic equations are the basis of qualitative simulation,which are used to express the dynamic behavior of steady-state continuous processes.When the values and operation of qualitative variables are redefined,qualitative algebraic equations can be transformed into signed direct graphs,which are frequently used to predict the trend of dynamic changes.However,it is difficult to use traditional qualitative algebra methods based on artificial trial and error to solve a complex problem for dynamic trends.An important aspect of modern qualitative algebra is to model and characterize complex systems with the corresponding computer-aided automatic reasoning.In this study,a qualitative affection equation based on multiple conditions is proposed,which enables the signed di-rect graphs to describe complex systems better and improves the fault diagnosis resolution.The application to an industrial case shows that the method performs well. 展开更多
关键词 qualitative algebraic equations signed directed graph affection equation multiple conditions dynamic trend analysis
下载PDF
On New Invariant Solutions of Generalized Fokker-Planck Equation 被引量:1
14
作者 YAORuo-Xia LIZhi-Bin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第5期665-668,共4页
The generalized one-dimensional Fokker-Planck equation is analyzed via potential symmetry method and the invariant solutions under potential symmetries are obtained. Among those solutions, some are new and first repor... The generalized one-dimensional Fokker-Planck equation is analyzed via potential symmetry method and the invariant solutions under potential symmetries are obtained. Among those solutions, some are new and first reported. 展开更多
关键词 Fokker-Planck equation potential symmetry invariant solutions symbolic computation
下载PDF
Direct Approach to Construct the Periodic Wave Solutions for Two Nonlinear Evolution Equations 被引量:2
15
作者 CAI Ke-Jie TIAN Bo +1 位作者 ZHANG Huan MENG Xiang-Hua 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第9期473-478,共6页
With symbolic computation, the Hirota method and Riemann theta function are employed to directly construct the periodic wave solutions for the Hirota-Satsuma equation for shallow water waves and Boiti-Leon-Manna- Pemp... With symbolic computation, the Hirota method and Riemann theta function are employed to directly construct the periodic wave solutions for the Hirota-Satsuma equation for shallow water waves and Boiti-Leon-Manna- Pempinelli equation. Then, the corresponding figures of the periodic wave solutions are given. Fhrthermore, it is shown that the known soliton solutions can be reduced from the periodic wave solutions. 展开更多
关键词 periodic wave solutions Hirota-Satsuma equation for shallow water waves Boiti-Leon-Manna-Pempinelli equation Hirota method Riemann theta function
下载PDF
Sub-ODE's New Solutions and Their Applications to Two Nonlinear Partial Differential Equations with Higher-Order Nonlinear Terms
16
作者 ZHANG Li-Hua HE Jin-Yu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第11期773-778,共6页
In the present paper, with the aid of symbolic computation, families of new nontrivial solutions of the first-order sub-ODE F12 = AF2 + BF2+p + CF2+2p (where F1= dF/dε, p 〉 0) are obtained. To our best knowled... In the present paper, with the aid of symbolic computation, families of new nontrivial solutions of the first-order sub-ODE F12 = AF2 + BF2+p + CF2+2p (where F1= dF/dε, p 〉 0) are obtained. To our best knowledge, these nontrivial solutions have not been found in [X.Z. Li and M.L. Wang, Phys. Lett. A 361 (2007) 115] and IS. Zhang, W. Wang, and J.L. Tong, Phys. Lett. A 372 (2008) 3808] and other existent papers until now. Using these nontrivial solutions, the sub-ODE method is described to construct several kinds of exact travelling wave solutions for the generalized KdV-mKdV equation with higher-order nonlinear terms and the generalized ZK equation with higher-order nonlinear terms. By means of this method, many other physically important nonlinear partial differential equations with nonlinear terms of any order can be investigated and new nontrivial solutions can be explicitly obtained with the help of symbolic computation system Maple or Mathematics. 展开更多
关键词 generalized KdV-mKdV equation generalized Zakharov-Kuznetsov equation the sub-ODE methods symbolic computation higher-order nonlinear terms
下载PDF
A New Generalized Riccati Equation Rational Expansion Method to Generalized Burgers-Fisher Equation with Nonlinear Terms of Any Order 被引量:1
17
作者 ZHANG Xiao-Ling WANG Jing ZHANG Hong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第5X期779-786,共8页
In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution eq... In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution equations with nonlinear terms of any order. Compared with most existing tanh methods for finding travelling wave solutions, the proposed method not only recovers the results by most known algebraic methods, but also provides new and more general solutions. We choose the generalized Burgers-Fisher equation with nonlinear terms of any order to illustrate our method. As a result, we obtain several new kinds of exact solutions for the equation. This approach can also be applied to other nonlinear evolution equations with nonlinear terms of any order. 展开更多
关键词 generalized Riccati equation rational expansion method generalized Burgers-Fisher equation with nonlinear terms of any order symbolic computation
下载PDF
SYMBOLIC MANIPULATION FOR SOLVING PHYSICAL PROBLEMS
18
作者 王莱 《Transactions of Tianjin University》 EI CAS 1996年第2期88+85-87,共4页
An introduction is made to symbolic manipulation and its application in physical education. Some examples for the effective use of the general purpose software tool Mathematica are presented.
关键词 symbolic manipulation nonlinear differential equation MATHEMATICA
下载PDF
A Generalized Method and Exact Solutions in Bose-Einstein Condensates in an Expulsive Parabolic Potential
19
作者 LI Biao 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第3X期391-398,共8页
In the paper, a generalized sub-equation method is presented to construct some exact analytical solutions of nonlinear partial differential equations. Making use of the method, we present rich exact analytical solutio... In the paper, a generalized sub-equation method is presented to construct some exact analytical solutions of nonlinear partial differential equations. Making use of the method, we present rich exact analytical solutions of the onedimensional nonlinear Schrfdinger equation which describes the dynamics of solitons in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. The solutions obtained include not only non-traveling wave and coefficient function's soliton solutions, but also Jacobi elliptic function solutions and Weierstra.ss elliptic function solutions. Some plots are given to demonstrate the properties of some exact solutions under the Feshbachmanaged nonlinear coefficient and the hyperbolic secant function coefficient. 展开更多
关键词 nonlinear Schrodinger equation symbolic computation SOLITON
下载PDF
Symbolic Computation and q-Deformed Function Solutions of (2+1)-Dimensional Breaking Soliton Equation 被引量:1
20
作者 CAO Li-Na WANG Deng-Shan CHEN Lan-Xin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第2期270-274,共5页
In this paper, by using symbolic and algebra computation, Chen and Wang's multiple R/ccati equations rational expansion method was further extended. Many double soliton-like and other novel combined forms of exact so... In this paper, by using symbolic and algebra computation, Chen and Wang's multiple R/ccati equations rational expansion method was further extended. Many double soliton-like and other novel combined forms of exact solutions of the (2+1)-dimensional Breaking soliton equation are derived by using the extended multiple Riccatl equations expansion method. 展开更多
关键词 q-deformed hyperbolic functions symbolic computation Riccati equation soliton-like solution
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部