In this paper, a function projective synchronization scheme is developed to investigate the function projective synchronization between the discrete-time driven chaotic system and the discrete-time response chaotic sy...In this paper, a function projective synchronization scheme is developed to investigate the function projective synchronization between the discrete-time driven chaotic system and the discrete-time response chaotic system. With the aid of symbolic-numeric computation, we use the scheme to study the function projective synchronization between 2D Lorenz discrete-time system and Hdnon discrete-time system, as well as that between 3D discrete-time hyperchaotic system and Henon-like map via three scalar controllers, respectively. Moreover numerical simulations are used to verify the effectiveness of the proposed scheme.展开更多
With the aid of symbolic computation system Mathematica, several explicit solutions for Fisher's equation and CKdV equation are constructed by utilizing an auxiliary equation method, the so called G′/G-expansion met...With the aid of symbolic computation system Mathematica, several explicit solutions for Fisher's equation and CKdV equation are constructed by utilizing an auxiliary equation method, the so called G′/G-expansion method, where the new and more general forms of solutions are also constructed. When the parameters are taken as special values, the previously known solutions are recovered.展开更多
This paper aims to conduct a research on the state of the art of artificial intelligence techniques to investigate the relationships between cognitive actions addressed in steps of mathematical modeling and computatio...This paper aims to conduct a research on the state of the art of artificial intelligence techniques to investigate the relationships between cognitive actions addressed in steps of mathematical modeling and computational semiotics activities. It also briefly reviews the main techniques of artificial intelligence, with particular emphasis on intelligent systems techniques. Such analysis uses semiotic concepts in order to identify the use of new techniques for modeling intelligent systems through the integrated use of mathematical and computational tools. At last, once understood that semiotics can bring contributions to the study of intelligent systems, a methodology for modeling computational semiotics based on the semiotic concepts formalization extracted from the semiotic theory of Charles Sanders Peiree is proposed.展开更多
A new expanded approach is presented to find exact solutions of nonlinear differential-difference equations. As its application, the soliton solutions and periodic solutions of a lattice equation are obtained.
In some fields such as Mathematics Mechanization, automated reasoning and Trustworthy Computing, etc., exact results are needed. Symbolic computations are used to obtain the exact results. Symbolic computations are of...In some fields such as Mathematics Mechanization, automated reasoning and Trustworthy Computing, etc., exact results are needed. Symbolic computations are used to obtain the exact results. Symbolic computations are of high complexity. In order to improve the situation, exact interpolating methods are often proposed for the exact results and approximate interpolating methods for the ap- proximate ones. In this paper, the authors study how to obtain exact interpolation polynomial with rational coefficients by approximate interpolating methods.展开更多
基金National Natural Science Foundation of China under Grant No.10735030Shanghai Leading Academic Discipline Project under Grant No.B412+3 种基金Natural Science Foundation of Zhejiang Province of China under Grant No.Y604056the Doctoral Foundation of Ningbo City under Grant No.2005A61030the Program for Changjiang Scholars and Innovative Research Team in Universities under Grant No.IRT0734K.C.Wong Magna Fund in Ningbo University
文摘In this paper, a function projective synchronization scheme is developed to investigate the function projective synchronization between the discrete-time driven chaotic system and the discrete-time response chaotic system. With the aid of symbolic-numeric computation, we use the scheme to study the function projective synchronization between 2D Lorenz discrete-time system and Hdnon discrete-time system, as well as that between 3D discrete-time hyperchaotic system and Henon-like map via three scalar controllers, respectively. Moreover numerical simulations are used to verify the effectiveness of the proposed scheme.
文摘With the aid of symbolic computation system Mathematica, several explicit solutions for Fisher's equation and CKdV equation are constructed by utilizing an auxiliary equation method, the so called G′/G-expansion method, where the new and more general forms of solutions are also constructed. When the parameters are taken as special values, the previously known solutions are recovered.
文摘This paper aims to conduct a research on the state of the art of artificial intelligence techniques to investigate the relationships between cognitive actions addressed in steps of mathematical modeling and computational semiotics activities. It also briefly reviews the main techniques of artificial intelligence, with particular emphasis on intelligent systems techniques. Such analysis uses semiotic concepts in order to identify the use of new techniques for modeling intelligent systems through the integrated use of mathematical and computational tools. At last, once understood that semiotics can bring contributions to the study of intelligent systems, a methodology for modeling computational semiotics based on the semiotic concepts formalization extracted from the semiotic theory of Charles Sanders Peiree is proposed.
基金the National Natural Science Foundation of China (No. 60773119)
文摘A new expanded approach is presented to find exact solutions of nonlinear differential-difference equations. As its application, the soliton solutions and periodic solutions of a lattice equation are obtained.
基金supported by China 973 Frogram 2011CB302402the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX2-YW-S02)+1 种基金the National Natural Science Foundation of China(10771205)the West Light Foundation of the Chinese Academy of Sciences
文摘In some fields such as Mathematics Mechanization, automated reasoning and Trustworthy Computing, etc., exact results are needed. Symbolic computations are used to obtain the exact results. Symbolic computations are of high complexity. In order to improve the situation, exact interpolating methods are often proposed for the exact results and approximate interpolating methods for the ap- proximate ones. In this paper, the authors study how to obtain exact interpolation polynomial with rational coefficients by approximate interpolating methods.